数据结构与算法分析 – Disjoint Set(并查集)
什么是并查集?
并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。
并查集的主要操作
1.合并两个不相交集合
2.判断两个元素是否属于同一集合
主要操作的解释及代码
一开始我们假设元素都是分别属于一个独立的集合里的。
(1).合并两个不相交集合 操作很简单:先设置一个数组Father[x],表示x的“父亲”的编号。 那么,合并两个不相交集合的方法就是,找到其中一个集合最父亲的父亲(也就是最久远的祖先),将另外一个集合的最久远的祖先的父亲指向它。上图为两个不相交集合,b图为合并后id(b)=id(g)
1: void init(){2: int i;3: for(i=0;i<maxn;i++)4: id[i]=-1;5: }6: void Union(int x,int y){7: int rx=find_root(x);8: int ry=find_root(y);9: if(rx==ry)10: return;11: id[ry]=rx;12: }.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }(2).判断两个元素是否属于同一集合仍然使用上面的数组,则本操作即可转换为寻找两个元素的最久远祖先是否相同。可以采用递归实现。
1: bool judge(int x, int y)2: {3: return find_root(x) == find_root(y);4: }
并查集的优化
(1).路径压缩
刚才我们说过,寻找祖先时采用递归,但是一旦元素一多起来,或退化成一条链,每次GetFather都将会使用O(n)的复杂度,这显然不是我们想要的。
对此,我们必须要进行路径压缩,即我们找到最久远的祖先时“顺便”把它的子孙直接连接到它上面,这就是路径压缩了。
1: int find_root(int x){2: if(id[x]==-1)3: return x;4: else5: id[x]=find_root(id[x]);6: return id[x];7: }.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }(2).rank合并
1.按照树的高度合并。1: int rank[N]={0};// 节点高度的上界2:3: void Union(int x, int y)4: {5: int rx=find_root(x);6: int ry=find_root(y);7: if (rank[rx] > rank[ry])8: id[ry] = rx;9: else {10: id[rx] = ry;11: if (rank[rx] == rank[ry])12: rank[ry]++;13: }14: }2.按照集合的大小合并
1: int rank[N];// 集合的大小2:3: void init(){4: for(int i=0;i<N;i++){5: id[i]=-1;6: rank[i]=1;7: }8: void Union(int x, int y)9: {10: int rx=find_root(x);11: int ry=find_root(y);12: if (rank[rx] > rank[ry]){13: rank[rx]+=rank[ry];14: id[ry] = rx;15: }16: else {17: rank[ry]+=rank[rx];18: id[rx] = ry;19: }20: }.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }
并查集系列题目[HDU]:http://acm.hdu.edu.cn/problemclass.php?id=721
数据结构与算法分析 – Disjoint Set(并查集)的更多相关文章
- 【数据结构】【计算机视觉】并查集(disjoint set)结构介绍
1.简述 在实现多图像无序输入的拼接中,我们先使用surf算法对任意两幅图像进行特征点匹配,每对图像的匹配都有一个置信度confidence参数,来衡量两幅图匹配的可信度,当confidence> ...
- 数据结构 之 并查集(Disjoint Set)
一.并查集的概念: 首先,为了引出并查集,先介绍几个概念: 1.等价关系(Equivalent Relation) 自反性.对称性.传递性. 如果a和b存在等价关系,记 ...
- 《数据结构与算法分析:C语言描述》复习——第八章“并查集”——并查集
2014.06.18 14:16 简介: “并查集”,英文名为“union-find set”,从名字就能看出来它支持合并与查找功能.另外还有一个名字叫“disjoint set”,中文名叫不相交集合 ...
- 【算法与数据结构】并查集 Disjoint Set
并查集(Disjoint Set)用来判断已有的数据是否构成环. 在构造图的最小生成树(Minimum Spanning Tree)时,如果采用 Kruskal 算法,每次添加最短路径前,需要先用并查 ...
- 数据结构《14》----并查集 Union-Find
描述: 并查集是一种描述解决等价关系.能够方便地描述不相交的多个集合. 支持如下操作 1. 建立包含元素 x 的集合 MakeSet(x) 2. 查找给定元素所在的集合 Find(x), 返回 ...
- 并查集(Disjoint Set)
在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中.这一类问题其特点是看似并不复杂, ...
- 数据结构之并查集Union-Find Sets
1. 概述 并查集(Disjoint set或者Union-find set)是一种树型的数据结构,常用于处理一些不相交集合(Disjoint Sets)的合并及查询问题. 2. 基本操作 并查集 ...
- 数据结构09—— 并查集(Union-Find)
一.关于并查集 并查集(Union-Find)是一种树型的数据结构,常用于处理一些不相交集合(Disjoint Sets)的合并及查询问题.并查集(Union-Find)从名字可以看出,主要它涉及两种 ...
- ACM数据结构-并查集
ACM数据结构-并查集 并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合 ...
随机推荐
- 如何用 fiddler 捕获 https 请求
安装完 Fiddler 后,我们每次打开浏览器输入 url,Fiddler 便会捕获到我们的 http 请求(Fiddler 是以代理 web 服务器的形式工作的,它使用代理地址:127.0.0.1, ...
- bootstrap - typeahead自动补全插件
$('#Sale').typeahead({ ajax: { url: '@Url.Action("../Contract/GetSale")', //timeout: 300, ...
- [BZOJ 1997][HNOI2010]Planar(2-SAT)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1997 分析: 考虑每条边是在圈子里面还是圈子外面 所以就变成了2-SAT判定问题了= ...
- Docker部署SDN环境
2014-12-03 by muzi Docker image = Java class Docker container = Java object 前言 5月份的时候,当我还是一个大学生的时候,有 ...
- A Regularized Competition Model for Question Diffi culty Estimation in Community Question Answering Services-20160520
1.Information publication:EMNLP 2014 author:Jing Liu(在前一篇sigir基础上,拓展模型的论文) 2.What 衡量CQA中问题的困难程度,提出从两 ...
- Ubuntu backlight
我们可以通过键盘来调节亮度,但是那样亮度无法微调,每次变亮变得太多. 在 /sys/class/backlight/nv_backlight 这个目录下,brightness 是最主要的.backli ...
- Java之构造器的作用
我总是要把构造器和方法混淆,后来发现, 方法,实际上,是需要用于执行java代码的,而构造器, 构造器,,,是一个类的实例!! 为什么呢? 类的实例,我们需要用类来创建对象,进而访问其属性,因为实例是 ...
- android 按钮点击效果实现
在其他人的博客里看到其实实现按钮点击效果的方法有很多,这里提到的只是其中一个办法 图片素材(我自己用截图截的,可以自己搞) 放到mipmap目录下(studio是在这个目录下 , eclipse 直接 ...
- 十天冲刺---Day8
站立式会议 站立式会议内容总结: 燃尽图 照片 最近思考一个问题.项目是怎么进行到这一步的. 算了,这个发在明天的冲刺总结吧.. 还需继续努力,队友快回来快回来..
- scrum阶段总结
项目预期计划: 确定编码规范. 根据原型图,设计并实现UI,添加各个界面,按钮,对话框,列表,窗口,导航等,理清各个界面的跳转逻辑. 学习测试技巧,编写测试用例. 实现需求文档中提出的功能,分别为:景 ...

