1101: [POI2007]Zap

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2262  Solved: 895
[Submit][Status][Discuss]

Description

  FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a
,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

Input

  第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个
正整数,分别为a,b,d。(1<=d<=a,b<=50000)

Output

  对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。

Sample Input

2
4 5 2
6 4 3

Sample Output

3
2
//对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(
6,3),(3,3)。

HINT

 

Source

分析:

其实相当于求n/d,m/d限制下,gcd(i,j)==1的ij个数

做法与http://www.cnblogs.com/neighthorn/p/6214769.html相同...

需要注意的是这题O(n)肯定过不了...没有看数据范围的我先TLE了一发...

因为(n/i)*(m/i)的取值最多有sqrt(n)+sqrt(m)种,所以我们预处理μ的前缀和,分段计算就好了...

代码:

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
using namespace std;
//大鹏一日同风起,扶摇直上九万里 const int maxn=+; int n,m,d,cas,cnt,miu[maxn],vis[maxn],prime[maxn]; long long ans=; signed main(void){
memset(vis,,sizeof(vis));cnt=;miu[]=;
for(int i=;i<=;i++){
if(!vis[i])
prime[++cnt]=i,vis[i]=,miu[i]=-;
for(int j=;j<=cnt&&prime[j]*i<=;j++){
vis[i*prime[j]]=;
if(i%prime[j]==){
miu[i*prime[j]]=;break;
}
miu[i*prime[j]]=-miu[i];
}
}
for(int i=;i<=;i++)
miu[i]+=miu[i-];
scanf("%d",&cas);
while(cas--){
scanf("%d%d%d",&n,&m,&d);
n/=d,m/=d;ans=;
if(n>m)
swap(n,m);
for(int i=,r;i<=n;i=r+){
r=min(n/(n/i),m/(m/i));
ans+=(long long)(miu[r]-miu[i-])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return ;
}

by NeighThorn

BZOJ 1101: [POI2007]Zap的更多相关文章

  1. BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )

    求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...

  2. BZOJ 1101 [POI2007]Zap(莫比乌斯反演)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1101 [题目大意] 求[1,n][1,m]内gcd=k的情况 [题解] 考虑求[1,n ...

  3. bzoj 1101 [POI2007]Zap——反演

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 #include<cstdio> #include<cstring& ...

  4. BZOJ 1101 [POI2007]Zap | 第一道莫比乌斯反(繁)演(衍)

    题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1101 题解: http://www.cnblogs.com/mrha/p/8203612.h ...

  5. BZOJ 1101 [POI2007]Zap ——Dirichlet积

    [题目分析] Dirichlet积+莫比乌斯函数. 对于莫比乌斯函数直接筛出处理前缀和. 对于后面向下取整的部分,可以分成sqrt(n)+sqrt(m)部分分别计算 学习了一下线性筛法. 积性函数可以 ...

  6. 1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...

  7. 【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1101 无限膜拜数论和分块orz 首先莫比乌斯函数的一些性质可以看<初等数论>或<具 ...

  8. 【BZOJ】1101 [POI2007]Zap(莫比乌斯反演)

    题目 传送门:QWQ 分析 莫比乌斯反演. 还不是很熟练qwq 代码 //bzoj1101 //给出a,b,d,询问有多少对二元组(x,y)满足gcd(x,y)=d.x<=a,y<=b # ...

  9. 1101: [POI2007]Zap

    Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a ,y<=b,并且gcd(x,y)=d.作为FGD的同 ...

随机推荐

  1. 好推二维码如何通过应用宝微下载支持微信自动打开APP下载?

    好推二维码 官网 http://www.hotapp.cn 1. 为什么使用应用宝微下载? APP下载二维码,通过微信扫描下载的时候,微信目前只支持应用宝微下载,才能在微信里直接打开下载,否则就需要在 ...

  2. Java 项目JDBC 链接数据库中会出现的错误

    1.出现的地方 package com.jdbc; import java.sql.Connection; import java.sql.DriverManager; import java.sql ...

  3. iOS coreData问题

    iOS常见错误-CoreData: Cannot load NSManagedObjectModel.nil is an illegal URL parameter
这是因为在工程中CoreData的 ...

  4. response设置输出文件编码

    在java后台的Action代码或者Servlet代码中用response的方法来设置输出内容的编码方式,有以下三个方法: 1.response.setCharacterEncoding(" ...

  5. JavaScript Patterns 4.8 Function Properties - A Memoization Pattern

    Gets a length property containing the number of arguments the function expects: function func(a, b, ...

  6. JavaScript(三)——DOM操作一

    一.DOM的基本概念 DOM是文档对象模型,这种模型为树模型:文档是指标签文档:对象是指文档中每个元素:模型是指抽象化的东西. 二.Window对象操作 1.属性和方法: 属性(值或者子对象): op ...

  7. const,readonly 这些你真的懂吗? 也许会被面试到哦。。。

    首先不可否认,这些在面试上会经常被面试官问起,但是你回答的让面试官满意吗?当然如果你知道了这些原理,或许你就不 怕了.既然说到了原理,我们还是从MSDN说起. 一:值得推敲的几个地方 1.先来看看ms ...

  8. JavaWeb防止表单重复提交(转载)

    转载自:http://blog.csdn.net/ye1992/article/details/42873219 在平时开发中,如果网速比较慢的情况下,用户提交表单后,发现服务器半天都没有响应,那么用 ...

  9. WebApi深入学习--概述+路由查找

    如何创建Controller这里就不说了,只写一些可能是高阶知识的内容 关于WebApi的官方介绍及示例 http://www.asp.net/web-api/ 1.跨域 Asp.NET有专门的跨域扩 ...

  10. 0016 Java学习笔记-异常-如果try-catch-finally中都存在return语句会怎样?

    上午在搜索"System.runFinalization"的时候,搜到 http://www.cnblogs.com/Skyar/p/5962253.html ,其中有关于try- ...