题目描述

给定一张n个点,m条双向边的无向图。
你要从1号点走到n号点。当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点。
每当完成一次交易时,你可以选择直接使用那张票,也可以选择扔掉那张票然后再花1元钱随机买另一张票。注意你可以无限次扔票。
请使用最佳的策略,使得期望花的钱数最少。

输入

第一行包含两个正整数n,m(1<=n,m<=300000),表示点数和边数。
接下来m行,每行两个正整数u,v(1<=u,v<=n),表示一条双向边。
输入数据保证无重边、无自环,且1号点一定可以走到n号点。

输出

输出一行一个实数,即最少的期望花费,当绝对或者相对误差不超过10^{-6}时视为正确。

样例输入

5 8
1 2
1 3
1 4
2 3
2 4
3 5
5 4
2 5

样例输出

4.1111111111


题解

期望dp+堆优化Dijkstra

设 $f[i]$ 表示 $i$ 到终点的期望步数,那么有:$f[n]=0\ ,\ f[x]=\frac{\sum\limits_{(x,y)}\text{min}(f[x],f[y])+1}{d[x]}$ ,其中 $d[x]$ 表示 $x$ 的度数。

套路:对于这种 “初始只有一个点的dp值确定、其它点的dp值与其相邻的点有关” 的图上dp,考虑使用类似最短路的方式转移。

初始的时候除了 $n$ 以外,每个点的 $\text{min}(f[x],f[y])$ 都取 $f[x]$ ,dp值为 $+\infty$ 。

然后从 $n$ 号点开始最短路转移:对于当前的点 $i$ ,如果某个相邻的 $j$ 有 $f[j]>f[i]$ ,则对于 $f[j]$ 的计算来说,$\text{min}(f[j],f[i])$ 取 $f[i]$ 更优。此时更新 $j$ 的dp值,并将 $j$ 加入到待用于更新其它点的集合中。

注意到:如果使用 $f[i]$ 将 $f[j]$ 更新为 $f'[j]$ ,那么显然有 $f[i]\le f'[j]\le f[j]$ (等号在 $f[i]=f[j]$ 时取到),满足堆优化Dijkstra的贪心策略(当前最小的一定不会再被更新到更小),因此可以使用dp值小根堆来维护待用于更新其它点的集合,使用类似堆优化Dijkstra的方式转移即可。

最终的答案就是 $f[1]$ 。

时间复杂度 $O(m\log n)$

#include <queue>
#include <cstdio>
#include <algorithm>
#define N 300010
using namespace std;
typedef pair<double , int> pr;
priority_queue<pr> q;
double s[N] , f[N];
int head[N] , to[N << 1] , next[N << 1] , cnt , vis[N] , d[N] , c[N];
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
int main()
{
int n , m , i , x , y;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x) , d[x] ++ , d[y] ++ ;
q.push(pr(0 , n));
while(!q.empty())
{
x = q.top().second , q.pop();
if(vis[x]) continue;
vis[x] = 1;
for(i = head[x] ; i ; i = next[i])
if(!vis[to[i]])
c[to[i]] ++ , s[to[i]] += f[x] , f[to[i]] = (s[to[i]] + d[to[i]]) / c[to[i]] , q.push(pr(-f[to[i]] , to[i]));
}
printf("%lf\n" , f[1]);
return 0;
}

【bzoj5197】[CERC2017]Gambling Guide 期望dp+堆优化Dijkstra的更多相关文章

  1. [BZOJ5197] [CERC2017]Gambling Guide

    [BZOJ5197] [CERC2017]Gambling Guide 题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=5197 Solut ...

  2. 【bzoj1097】[POI2007]旅游景点atr 状压dp+堆优化Dijkstra

    题目描述 FGD想从成都去上海旅游.在旅途中他希望经过一些城市并在那里欣赏风景,品尝风味小吃或者做其他的有趣的事情.经过这些城市的顺序不是完全随意的,比如说FGD不希望在刚吃过一顿大餐之后立刻去下一个 ...

  3. Luogu4745/Gym101620G CERC2017 Gambling Guide 期望、DP、最短路

    传送门--Luogu 传送门--Vjudge 设\(f_x\)为从\(x\)走到\(N\)的期望步数 如果没有可以不动的限制,就是隔壁HNOI2013 游走 如果有可以不动的限制,那么\(f_x = ...

  4. BZOJ5197:[CERC2017]Gambling Guide(最短路,期望DP)

    Description 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易 ...

  5. 【BZOJ5197】Gambling Guide (最短路,期望)

    [BZOJ5197]Gambling Guide (最短路,期望) 题面 BZOJ权限题 洛谷 题解 假设我们求出了每个点的期望,那么对于一个点,只有向期望更小的点移动的时候才会更新答案. 即转移是: ...

  6. 【bzoj4016】[FJOI2014]最短路径树问题 堆优化Dijkstra+DFS树+树的点分治

    题目描述 给一个包含n个点,m条边的无向连通图.从顶点1出发,往其余所有点分别走一次并返回. 往某一个点走时,选择总长度最短的路径走.若有多条长度最短的路径,则选择经过的顶点序列字典序最小的那条路径( ...

  7. BZOJ 3040 最短路 (堆优化dijkstra)

    这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...

  8. UVA - 11374 - Airport Express(堆优化Dijkstra)

    Problem    UVA - 11374 - Airport Express Time Limit: 1000 mSec Problem Description In a small city c ...

  9. BZOJ5415[Noi2018]归程——kruskal重构树+倍增+堆优化dijkstra

    题目描述 本题的故事发生在魔力之都,在这里我们将为你介绍一些必要的设定. 魔力之都可以抽象成一个 n 个节点.m 条边的无向连通图(节点的编号从 1 至 n).我们依次用 l,a 描述一条边的长度.海 ...

随机推荐

  1. 20155325 2016-2017-2 《Java程序设计》第十周学习总结

    教材学习内容总结 Java视频笔记 强制转换 运算符 获取特定位数的值 循环 switch(不能判断布尔型) int x = 3, y = 3, z = 3; int n = 0; switch (x ...

  2. DIRECT3D状态详解

    Microsoft® Direct3D®设备是一个状态机.应用程序设置光照.渲染和变换模块的状态,然后在渲染时传递数据给它们. 本节描述图形流水线用到的所有不同类型的状态. 渲染状态 取样器状态 纹理 ...

  3. spring源码-aop-5

    一.在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续,是软件开发 ...

  4. 新技能get,使用PHPStorm的deployment工具

    1. 工具栏 Tools - Deployment - Configuration 2. 添加一个服务端的配置信息 type 类型可以选择:FTP.local等. 填完信息别忘了点"Test ...

  5. springAOP之代理模式

    springAOP指的是在spring中的AOP,什么是AOP,相对于java中的面向对象(oop),在面向对象中一些公共的行为,像日志记录,权限验证等如果都使用面向对象来做,会在每个业务方法中都写上 ...

  6. ubuntu apt-xxx

    1. apt-get install xxx 2. dpkg -l ; list software already installed. 3. apt-cache dumpavail ; print ...

  7. 413. Reverse Integer【LintCode java】

    Description Reverse digits of an integer. Returns 0 when the reversed integer overflows (signed 32-b ...

  8. 树形dp入门两题

    题目描述 小明对数学饱有兴趣,并且是个勤奋好学的学生,总是在课后留在教室向老师请教一些问题.一天他早晨骑车去上课,路上见到一个老伯正在修剪花花草草,顿时想到了一个有关修剪花卉的问题.于是当日课后,小明 ...

  9. Ryu学习总结(持续更新)

    Ryu学习总结 该篇学习笔记,与其他分析Ryu控制器代码的笔记不同,主要按照程序的构成来进行分块总结,由于本人为新手入门,不能保证没有错误,如果发现错误,欢迎指教. 以下的内容主要来源: 源码 官方文 ...

  10. vscode中安装使用markdown 插件

    linux中好用的IDE    vscode是微软推出的一款好用免费的IDE,可以快速部署开发环境,所说配置有些繁琐,但是瑕不掩瑜.它同时支持很多种拓展的编辑器,MarkDown只是其中的一种. 安装 ...