BZOJ4883 棋盘上的守卫(环套树+最小生成树)
容易想到网络流之类的东西,虽然范围看起来不太可做,不过这提供了一种想法,即将行列分别看做点。那么我们需要找一种连n+m条边的方案,使得可以从每条边中选一个点以覆盖所有点。显然每个点至少要连一条边。于是这个东西就必须是环套树森林了,并且显然其可以满足条件。现在要求的就是最小环套树森林。
求法类似kruskal,只要连了这条边之后该连通块的边数<=点数就给他连上。显然这样得到的是环套树森林,至于为什么最小,证明方法也与kruskal类似,即如果当前边不冗余却不加,则需要另一条边来做等效(这里等效比较广义,比如树边可以与其端点连通块的环边等效)的事,而贪心过程说明不存在更小的这样的边了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,t,fa[N],size[N],cnt[N];
ll ans;
struct data
{
int x,y,z;
bool operator <(const data&a) const
{
return z<a.z;
}
}edge[N];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4883.in","r",stdin);
freopen("bzoj4883.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
t++,edge[t].x=i,edge[t].y=n+j,edge[t].z=read();
sort(edge+,edge+n*m+);
for (int i=;i<=n+m;i++) fa[i]=i,size[i]=,cnt[i]=;
for (int i=;i<=n*m;i++)
{
int x=find(edge[i].x),y=find(edge[i].y);
if (x!=y)
{
if (cnt[x]+cnt[y]+<=size[x]+size[y])
ans+=edge[i].z,fa[x]=y,size[y]+=size[x],cnt[y]+=cnt[x]+;
}
else if (cnt[x]<size[x]) ans+=edge[i].z,cnt[x]++;
}
cout<<ans;
return ;
}
BZOJ4883 棋盘上的守卫(环套树+最小生成树)的更多相关文章
- BZOJ4883 棋盘上的守卫 基环树、Kruskal
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 题意:给出一个$N \times M$的棋盘,每个格子有权值.你需要每一行选中一 ...
- bzoj 4883 棋盘上的守卫 —— 基环树转化
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 首先,注意到每个点可横可竖,但花费一样: 所以考虑行列的交集,那么这个条件可以转化为行 ...
- BZOJ 4883 棋盘上的守卫 解题报告
BZOJ4883 棋盘上的守卫 考虑费用流,但是数据范围太大 考虑 \(i\) 行 \(j\) 列如果被选择,那么要么给 \(i\) 行,要么给 \(j\) 列 把选择 \(i\) 行 \(j\) 列 ...
- 【bzoj4883】[Lydsy2017年5月月赛]棋盘上的守卫 最小环套树森林
题目描述 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列必须恰好放置一个纵向守卫.每个位置放置守卫的代价是不一样的,且每个位置最多只能放置一个 ...
- BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小环套树森林&优化定向问题)
4883: [Lydsy1705月赛]棋盘上的守卫 Time Limit: 3 Sec Memory Limit: 256 MBSubmit: 475 Solved: 259[Submit][St ...
- 【BZOJ4883】棋盘上的守卫(最小生成树)
[BZOJ4883]棋盘上的守卫(最小生成树) 题面 BZOJ 题解 首先\(n\)行\(m\)列的棋盘显然把行列拆开考虑,即构成了一个\(n+m\)个点的图.我们把格子看成边,那么点\((x,y)\ ...
- BZOJ 4883 [Lydsy2017年5月月赛]棋盘上的守卫(最小生成环套树森林)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4883 [题目大意] 在一个n*m的棋盘上要放置若干个守卫. 对于n行来说,每行必须恰好 ...
- [bzoj4883][Lydsy2017年5月月赛]棋盘上的守卫
来自FallDream的博客,未经允许,请勿转载, 谢谢. 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须恰好放置一个纵向守卫.每个位置 ...
- 【题解】BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林)
[题解]BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林) 神题 我的想法是,每行每列都要有匹配且一个点只能匹配一个,于是就把格点和每行每列建点出来做一个最小生成树,但是不 ...
随机推荐
- Entity Framework中的几种加载方式
在Entity Framework中有三种加载的方式,分别是延迟加载,自动加载和显示加载.下面用一个例子来说明:现在有两个表,一个是资料表(Reference),另外一个表是资料分类表 ...
- Linux的10个最危险的命令
Linux命令行佷有用.很高效,也很有趣,但有时候也很危险,尤其是在你不确定你自己在正在做什么时候. 这篇文章将会向你介绍十条命令,但你最好不要尝试着去使用. 当然,以下命令通常都是在root权限下才 ...
- windows下如何将Python文件打包成.exe可执行文件
在使用Python做开发的时候,时不时会给自己编写了一些小工具辅助自己的工作,但是由于开发依赖环境问题,多数只能在自己电脑上运行,拿到其它电脑后就没法运行了.这显得很不方便,不符合我们的初衷,那么有没 ...
- 180724-统计JVM进程中线程数两种方式小记
I. 统计进程中的线程数 相关系列博文推荐: 180711-JVM定位分析CPU性能消耗 180704-JDK常用监控参数 jvm调优的工具介绍 1. proc查询 /proc 目录以可读文本文件形式 ...
- JMeter自学笔记1-环境安装
一.写在前面的话: Jmeter是一款优秀的开源测试工具, 是每位测试工程师进阶过程中,需要熟悉并掌握的一款测试工具,熟练使用Jmeter能大大提高工作效率. Jmeter环境安装需要依赖JDK,所以 ...
- selenium+python 搭建自动化环境
一.以搭建windows平台为例 准备工具如下: 1)下载Python 2)安装,配置环境变量 3)安装selenium,通过pip安装,命令如下: pip install selenium 方式二 ...
- No.03---Vue学习之路之模块化组织
前两篇讲解了一下 Vuex 的基本使用方法,可是在实际项目中那么写肯定是不合理的,如果组件太多,不可能把所有组件的数据都放到一个 store.js 中的,所以就需要模块化的组织 Vuex,首先看一下 ...
- div不设置高度背景颜色或外边框不能显示的解决方法
在使用div+css进行网页布局时,如果外部div有背景颜色或者边框,而不设置其高度,在浏览时出现最外层Div的背景颜色和边框不起作用的问题. 大体结构<div class="oute ...
- 高可用Kubernetes集群-8. 部署kube-scheduler
十.部署kube-scheduler kube-scheduler是Kube-Master相关的3个服务之一,是有状态的服务,会修改集群的状态信息. 如果多个master节点上的相关服务同时生效,则会 ...
- springboot集成jpa,在postgresql数据库中创建主键自增表
依赖文件 <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http:/ ...