BZOJ4883 棋盘上的守卫(环套树+最小生成树)
容易想到网络流之类的东西,虽然范围看起来不太可做,不过这提供了一种想法,即将行列分别看做点。那么我们需要找一种连n+m条边的方案,使得可以从每条边中选一个点以覆盖所有点。显然每个点至少要连一条边。于是这个东西就必须是环套树森林了,并且显然其可以满足条件。现在要求的就是最小环套树森林。
求法类似kruskal,只要连了这条边之后该连通块的边数<=点数就给他连上。显然这样得到的是环套树森林,至于为什么最小,证明方法也与kruskal类似,即如果当前边不冗余却不加,则需要另一条边来做等效(这里等效比较广义,比如树边可以与其端点连通块的环边等效)的事,而贪心过程说明不存在更小的这样的边了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,t,fa[N],size[N],cnt[N];
ll ans;
struct data
{
int x,y,z;
bool operator <(const data&a) const
{
return z<a.z;
}
}edge[N];
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4883.in","r",stdin);
freopen("bzoj4883.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
t++,edge[t].x=i,edge[t].y=n+j,edge[t].z=read();
sort(edge+,edge+n*m+);
for (int i=;i<=n+m;i++) fa[i]=i,size[i]=,cnt[i]=;
for (int i=;i<=n*m;i++)
{
int x=find(edge[i].x),y=find(edge[i].y);
if (x!=y)
{
if (cnt[x]+cnt[y]+<=size[x]+size[y])
ans+=edge[i].z,fa[x]=y,size[y]+=size[x],cnt[y]+=cnt[x]+;
}
else if (cnt[x]<size[x]) ans+=edge[i].z,cnt[x]++;
}
cout<<ans;
return ;
}
BZOJ4883 棋盘上的守卫(环套树+最小生成树)的更多相关文章
- BZOJ4883 棋盘上的守卫 基环树、Kruskal
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 题意:给出一个$N \times M$的棋盘,每个格子有权值.你需要每一行选中一 ...
- bzoj 4883 棋盘上的守卫 —— 基环树转化
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4883 首先,注意到每个点可横可竖,但花费一样: 所以考虑行列的交集,那么这个条件可以转化为行 ...
- BZOJ 4883 棋盘上的守卫 解题报告
BZOJ4883 棋盘上的守卫 考虑费用流,但是数据范围太大 考虑 \(i\) 行 \(j\) 列如果被选择,那么要么给 \(i\) 行,要么给 \(j\) 列 把选择 \(i\) 行 \(j\) 列 ...
- 【bzoj4883】[Lydsy2017年5月月赛]棋盘上的守卫 最小环套树森林
题目描述 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列必须恰好放置一个纵向守卫.每个位置放置守卫的代价是不一样的,且每个位置最多只能放置一个 ...
- BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小环套树森林&优化定向问题)
4883: [Lydsy1705月赛]棋盘上的守卫 Time Limit: 3 Sec Memory Limit: 256 MBSubmit: 475 Solved: 259[Submit][St ...
- 【BZOJ4883】棋盘上的守卫(最小生成树)
[BZOJ4883]棋盘上的守卫(最小生成树) 题面 BZOJ 题解 首先\(n\)行\(m\)列的棋盘显然把行列拆开考虑,即构成了一个\(n+m\)个点的图.我们把格子看成边,那么点\((x,y)\ ...
- BZOJ 4883 [Lydsy2017年5月月赛]棋盘上的守卫(最小生成环套树森林)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4883 [题目大意] 在一个n*m的棋盘上要放置若干个守卫. 对于n行来说,每行必须恰好 ...
- [bzoj4883][Lydsy2017年5月月赛]棋盘上的守卫
来自FallDream的博客,未经允许,请勿转载, 谢谢. 在一个n*m的棋盘上要放置若干个守卫.对于n行来说,每行必须恰好放置一个横向守卫:同理对于m列来说,每列 必须恰好放置一个纵向守卫.每个位置 ...
- 【题解】BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林)
[题解]BZOJ4883: [Lydsy1705月赛]棋盘上的守卫(最小生成基环森林) 神题 我的想法是,每行每列都要有匹配且一个点只能匹配一个,于是就把格点和每行每列建点出来做一个最小生成树,但是不 ...
随机推荐
- Python 爬虫之模拟登录
最近应朋友要求,帮忙爬取了小红书创作平台的数据,感觉整个过程很有意思,因此记录一下.在这之前自己没怎么爬过需要账户登录的网站数据,所以刚开始去看小红书的登录认证时一头雾水,等到一步步走下来,最终成功, ...
- linux 命令缩写
su super user apt advanced packaging tool ifconfig interface configuration so shared object fsp frac ...
- 基于Spring的最简单的定时任务实现与配置(三)--番外篇 cron表达式的相关内容
本来这篇文章是会跟本系列的前两篇文章一起发布的.但是,昨天在找资料总结的时候遇到了一点意外,就延后了一些. 本篇的内容主要参考了 这篇博文:http://www.cnblogs.com/junrong ...
- Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) E. Down or Right
从(1,1,n,n)每次只变一个坐标,进行询问. 如果问到对角线有距离限制, 再从(1,1,n/2,n/2)询问到(n/2,n/2,n,n) 记住前半部分贪心忘上走,后本部分贪心往右走 因为最后的路线 ...
- Android 不同分辨率下调整界面
Android Settings中有修改Disaply size的界面,通过修改Display size,能够修改屏幕分辨率. 由于修改了屏幕分辨率,有可能导致同一界面在不同的分辨率下显示出错(内容显 ...
- TW实习日记:第六天
今日的一整天都是在开发微信相关的接口,因为项目的系统是嵌在企业微信中,所以不可避免的要产生微信UserID和企业系统ID的匹配关系,那么就需要用手机号或是邮箱这种两边都存在的唯一参数进行匹配.然后再将 ...
- [network]数字签名
数字签名(又称公钥数字签名.电子签章)是一种类似写在纸上的普通的物理签名,但是使用了公钥加密领域的技术实现,用于鉴别数字信息的方法.一套数字签名通常定义两种互补的运算,一个用于签名,另一个用于验证. ...
- 《Learning scikit-learn Machine Learning in Python》chapter1
前言 由于实验原因,准备入坑 python 机器学习,而 python 机器学习常用的包就是 scikit-learn ,准备先了解一下这个工具.在这里搜了有 scikit-learn 关键字的书,找 ...
- ThinkPHP - 6 - 学习笔记(2015.5.4)
解决:OneThink 站点无法被友言uyan后台识别 打开友言uyan插件功能,但OneThink站点无法被友言uyan后台检测到.页面生成的uyan代码为: <!-- UY BEGIN -- ...
- Django 使用 Celery 实现异步任务
对于网站来说,给用户一个较好的体验是很重要的事情,其中最重要的指标就是网站的浏览速度.因此服务端要从各个方面对网站性能进行优化,比如可采用CDN加载一些公共静态文件,如js和css:合并css或者js ...