HDU1796How many integers can you find(容斥原理)
在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
(1)两个集合容斥关系

(2)三个集合容斥关系

公式:

这就是所谓的奇加偶减。
贴个模版题:
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1796
题目解析:
这个题有bug,m可能为0。然后知道奇加偶减这个东西后,就可以深搜了,将所有组合情况全列出来,然后求lcm就好了。
求1~(n-1)中被集合m中元素中整除的个数,没学容斥原理之前做这题肯定是会超时的。
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;
int n,m,top;
__int64 a[];
int gcd(int A,int B)
{
return B==?A:gcd(B,A%B);
}
//now为当前点,num为已经加入容斥的个数,lcm记录容斥的过程值(lcm),结果
void dfs(int now,int num,__int64 lcm,__int64 &sum)
{
lcm=a[now]/gcd(a[now],lcm)*lcm;
if(num&) sum+=(n-)/lcm;
else sum-=(n-)/lcm;
for(int i=now+; i<top; i++)
dfs(i,num+,lcm,sum);
}
int main()
{
int xx;
while(scanf("%d%d",&n,&m)!=EOF)
{
top=;
for(int i=; i<m; i++)
{
scanf("%d",&xx);
if(xx!=)
{
a[top++]=xx;
}
}
__int64 sum=;
for(int i=; i<top; i++)
{
dfs(i,,a[i],sum);
}
printf("%I64d\n",sum);
}
return ;
}
HDU1796How many integers can you find(容斥原理)的更多相关文章
- HDU 1796 Howmany integers can you find (容斥原理)
How many integers can you find Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 ...
- hdu1796 How many integers can you find 容斥原理
Now you get a number N, and a M-integers set, you should find out how many integers which are small ...
- HDU 1796 How many integers can you find(容斥原理)
How many integers can you find Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 ...
- HDU 1796 How many integers can you find(容斥原理)
题意 就是给出一个整数n,一个具有m个元素的数组,求出1-n中有多少个数至少能整除m数组中的一个数 (1<=n<=10^18.m<=20) 题解 这题是容斥原理基本模型. 枚举n中有 ...
- hdu分类 Math Theory(还有三题!)
这个分类怎么觉得这么水呢.. 这个分类做到尾的模板集: //gcd int gcd(int a,int b){return b? gcd(b, a % b) : a;} //埃氏筛法 O(nlogn) ...
- HDU 1796 How many integers can you find(容斥原理)
题目传送:http://acm.hdu.edu.cn/diy/contest_showproblem.php?cid=20918&pid=1002 Problem Description ...
- HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举)
HDU.1796 How many integers can you find ( 组合数学 容斥原理 二进制枚举) 题意分析 求在[1,n-1]中,m个整数的倍数共有多少个 与 UVA.10325 ...
- HDU 1796 How many integers can you find(容斥原理+二进制/DFS)
How many integers can you find Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 ...
- HDU 1796How many integers can you find(容斥原理)
How many integers can you find Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%I64d ...
随机推荐
- [转] Windows局域网通过NTP设置时间同步
NTP(Network Time Protocol,网络时间协议)是用来使网络中的各个计算机时间同步的一种协议. 如果局域网计算机(Windows系统)可以连接Internet,可以通过“控制面板”— ...
- DOCKER在windows上安装与配置
1.下载程序 安装包 https://github.com/boot2docker/windows-installer/releases(这个地址国内下载很慢) 用这个: https://get.da ...
- Android 手机随音乐振动
想到做一个Android软件可以在播放音乐的同时手机在音量或者音调高的时候振动一下. 等我熟练Android的时候试试...
- Mybatis中insert
<insert id="insert" parameterType="Currency"> INSERT INTO YZ_SECURITIES_CU ...
- Jquery跨域Ajax取值
HTML: $.ajax({ type: "get", async: false, url: "http://www.xxxxxx.com/otherLogin/chec ...
- Android英文文档翻译系列(5)——VPNService
API14位于android.net.VpnService 类概述|Class OverviewVpnService is a base class for applications to ext ...
- Linux学习——定义命令行函数(cd .. -> ..)
在使用shell的时候,每天要面对各种命令行,比如ls , cd .. 等 抱着简单,可依赖的思想.有些可以简化的操作可以要通过在 ~/.bashrc 中进行添加: 1. cd .. -> .. ...
- MQTT的学习研究(十一) IBM MQTT 简单发布订阅实例
package com.etrip.push; import com.ibm.mqtt.MqttAdvancedCallback; import com.ibm.mqtt.MqttClient; im ...
- weblogic jprofile配置
前提: 1.安装好weblogic 2.安装好jprofile 非等待模式: export JAVA_OPTIONS="${JAVA_OPTIONS} -Dweblogic.threadpo ...
- Nginx的安装和配置文件
一.什么是Nginx 反向代理的高手,可以做web服务器.smtp服务器.ftp服务器,也可以做waf等等.原理,反向代理,收集client请求然后转发给自己lan内的服务器,将请求到的资源回转给客户 ...