Description

小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目 前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红色,Sb张蓝色,Sg张绝 色.他又询问有多少种方案,Sun想了一下,又给出了正确答案. 最后小春发明了M种不同的洗牌法,这里他又问Sun有多少种不同的染色方案.两种染色方法相同当且仅当其中一种可以通过任意的洗牌法(即可以使用多种洗牌 法,而每种方法可以使用多次)洗成另一种.Sun发现这个问题有点难度,决定交给你,答案可能很大,只要求出答案除以P的余数(P为质数).

Input

第一行输入 5 个整数:Sr,Sb,Sg,m,p(m<=60,m+1<p<100)。n=Sr+Sb+Sg。接下来 m 行,每行描述
一种洗牌法,每行有 n 个用空格隔开的整数 X1X2...Xn,恰为 1 到 n 的一个排列,表示使用这种洗牌法,
第 i位变为原来的 Xi位的牌。输入数据保证任意多次洗牌都可用这 m种洗牌法中的一种代替,且对每种
洗牌法,都存在一种洗牌法使得能回到原状态

Output

不同染法除以P的余数

Sample Input

1 1 1 2 7
2 3 1
3 1 2

Sample Output

2

HINT

有2 种本质上不同的染色法RGB 和RBG,使用洗牌法231 一次可得GBR 和BGR,使用洗牌法312 一次 可得BRG 和GRB。

100%数据满足 Max{Sr,Sb,Sg}<=20。

【分析】

上个月学的群论终于派上用场了23333……

这题几乎就是一道等价类计数的练习题?注意到输入数据中黑体部分已经明确指出了输入数据中的所有置换恰好是一个完整的置换群(单位元是确定的,因此这里无需输入),那么根据Burnside引理,我们就有:等价类个数等于置换群中每个元素的“不动点”个数的平均值。其中“不动点”是指在置换$p$的作用下保持不变的排列种数。

那么,这道题中的“不动点”怎么求呢?根据置换的性质,我们可以将每种“洗牌法”分解成若干个不相交循环的乘积。对于一个排列,只要保证它在每个循环中的所有元素“颜色”都相同,就可以保证它在这种“洗牌法”下是一个“不动点”。于是,我们只要将每个置换分解成k个循环,记录下各个循环的长度$len_i$,就可以将问题转化为背包问题:“有3个背包,容量分别为Sr,Sb,Sg,将k件物品放入3个背包,第i件物品重量为$len_i$,求三个背包恰好放满的方案数”。

是不是毫无编码难度?→_→ 不过还要注意一点,我们上面的分析暂时没有考虑置换群中的单位元(即置换(1,2,...n)),只要再用可重集的全排列公式求出单位元的不动点个数,加上上面dp的结果后除以m + 1就好了。(读入的m个置换外加单位元)

最后不要忘了,上面所说的所有除法都是在模p剩余系$Z_p$中进行的,要用乘逆元来实现。

;
, c = getchar();
 + c - , y = ; , maxk = ;
};
] = ;
;i <= n;++i) fact[i] = fact[i-] * i % mod;
) ans += mod;
, mod, x, y);
 ? x + mod : x;
;
};
;i <= n;++i){
, cnt = , j = p[i];
; ++cnt;
;
][][] = ;
;i <= len;++i){
;j <= R;++j) ;k <= B;++k){
;
][j-loop[i]][k];
][j][k-loop[i]];
][j][k];
;i <= n;++i) getd(p[i]);
      
     init();
      
     work();
      
          cout << endl << (          ;
 }

Burnside引理+背包+可重集排列

[BZOJ1004](HNOI 2008) Cards的更多相关文章

  1. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  2. [补档][HNOI 2008]GT考试

    [HNOI 2008]GT考试 题目 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字. 他的不吉利数学A1A2... ...

  3. 【BZOJ1004】[HNOI2008]Cards Burnside引理

    [BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...

  4. BZOJ1004 HNOI Cards

    第一次学习置换群这个东西. 这题需要利用Burnside定理. 即我们求出循环节为一(转完不变)的个数的平均数也就是等价类的个数. 定义:设G={a1,a2,…ag}是目标集[1,n]上的置换群.每个 ...

  5. 【BZOJ 1004】【HNOI 2008】Cards

    http://www.lydsy.com/JudgeOnline/problem.php?id=1004 注意数据给出的m是一个没有单位元的置换群! 用Burnside引理,然后对每个置换群dp一下就 ...

  6. 【bzoj1004】 HNOI2008—Cards

    http://www.lydsy.com/JudgeOnline/problem.php?id=1004 (题目链接) 题意 n张卡片,染成3种颜色,每种颜色只能染固定张数.给出一些洗牌方案,问染色方 ...

  7. 【bzoj1004】[HNOI2008]Cards

    1004: [HNOI2008]Cards Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2928  Solved: 1754[Submit][Sta ...

  8. 【BZOJ 1005】【HNOI 2008】明明的烦恼

    http://www.lydsy.com/JudgeOnline/problem.php?id=1005 答案是\[\frac{(n-2)!}{(n-2-sum)!×\prod_{i=1}^{cnt} ...

  9. 【BZOJ 1043】【HNOI 2008】下落的圆盘 判断圆相交+线段覆盖

    计算几何真的好暴力啊. #include<cmath> #include<cstdio> #include<cstring> #include<algorit ...

随机推荐

  1. linux下实现在程序运行时的函数替换(热补丁)【转】

    转自:http://www.cnblogs.com/leo0000/p/5632642.html 声明:以下的代码成果,是参考了网上的injso技术,在本文的最后会给出地址,同时非常感谢injso技术 ...

  2. selenium===介绍

    selenium 是支持java.python.ruby.php.C#.JavaScript . 从语言易学性来讲,首选ruby ,python 从语言应用广度来讲,首选java.C#.php. 从语 ...

  3. Sql Server 2014/2012/2008/2005 数据库还原出现 3154错误的解决办法

    在Sql Server  数据库还原出现 3154错误 解决方法1:不要在数据库名字上点右键选择还原,而要是在根目录“数据库”三个字上点右键选择还原,然后再选择数据库,问题便可以解决,如果不行参照方法 ...

  4. 图论-强连通分量-Tarjan算法

    有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在 ...

  5. C json实战引擎 三 , 最后实现部分辅助函数

    引言 大学读的是一个很时髦的专业, 学了四年的游戏竞技. 可惜没学好. 但认真过, 比做什么都认真. 见证了  ...... 打的所有游戏人物中 分享一位最喜爱 的 “I've been alone ...

  6. java数组面试题

    一维数组可以写成:int[ ]x 或者int x[ ]: 二维数组可以写成:int[ ] y [ ] 或者int y[ ][ ] 或者int [ ][ ]y 面试题如下:       声明数组int[ ...

  7. php的设计模式

    1.单一职责原则 单一职责原则(Single Responsibility Principle) 含义:1.避免相同的职责分散到不同的类中,2.避免一个类承担太多的职责: srp的好处: 减少类之间的 ...

  8. JWT认证不通过导致不能访问视图的解决方案

    在做商城项目的购物车模块时,发现了一个问题. 需求:当用户登录时,添加商品到购物车的数据保存在redis.当用户未登录时,添加商品到购物车的数据保存在cookies.两个功能都写在一个视图里面.以JW ...

  9. [转]6个HelloWorld

    原文地址:点击打开链接 转这个帖子,是因为看了这个帖子使我明白了一个道理:一旦你发散自己的思维,激发自己的创意,就会发现原来编程是这么的好玩. 原文标题为<6个变态的C语言Hello World ...

  10. servlet学习记录:Servlet中的service()方法

    Servlet的生存时间是由init,service,destory方法构成,这里分析一下service这个方法 Servlet接口中定义了一个service()方法,而我们一般是使用HttpServ ...