>>> import tensorflow as tf
>>> node1 = tf.constant(3.0, dtype=tf.float32)
>>> node2 = tf.constant(4.0)
>>> node3=tf.constant(66)
>>> print(node1,node2,node3)
(<tf.Tensor 'Const:0' shape=() dtype=float32>, <tf.Tensor 'Const_1:0' shape=() dtype=float32>, <tf.Tensor 'Const_2:0' shape=() dtype=int32>)
>>> node4=tf.constant(77,dtype=tf.int32)
>>> print(node1,node2,node3,node4)
(<tf.Tensor 'Const:0' shape=() dtype=float32>, <tf.Tensor 'Const_1:0' shape=() dtype=float32>, <tf.Tensor 'Const_2:0' shape=() dtype=int32>, <tf.Tensor 'Const_3:0' shape=() dtype=int32>)
>>> sess = tf.Session()
2017-07-05 22:24:06.991688: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-05 22:24:06.991783: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-05 22:24:06.991820: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-07-05 22:24:06.991837: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-07-05 22:24:06.991850: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
>>> print(sess.run([node1, node2]))

[3.0, 4.0]

1、使用tf.constant函数,创建常数

可以指定常数类型,也可以隐式指定。

2、下面的语句输出常数对象

print(node1,node2,node3)

3、创建session,并生成计算图,然后,调用run方法

输出node1和node2的计算

print(sess.run([node1, node2]))print(sess.run([node1, node2]*(node1+node2)))
[ 21.  28.]

TF随笔-3的更多相关文章

  1. TF随笔-13

    import tensorflow as tf a=tf.constant(5) b=tf.constant(3) res1=tf.divide(a,b) res2=tf.div(a,b) with ...

  2. TF随笔-11

    #!/usr/bin/env python2 # -*- coding: utf-8 -*- import tensorflow as tf my_var=tf.Variable(0.) step=t ...

  3. TF随笔-10

    #!/usr/bin/env python# -*- coding: utf-8 -*-import tensorflow as tf x = tf.constant(2)y = tf.constan ...

  4. TF随笔-9

    计算累加 #!/usr/bin/env python2 # -*- coding: utf-8 -*-"""Created on Mon Jul 24 08:25:41 ...

  5. TF随笔-8

    #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Jul 10 09:35:04 201 ...

  6. TF随笔-7

    求平均值的函数 reduce_mean axis为1表示求行 axis为0表示求列 >>> xxx=tf.constant([[1., 10.],[3.,30.]])>> ...

  7. tf随笔-6

    import tensorflow as tfx=tf.constant([-0.2,0.5,43.98,-23.1,26.58])y=tf.clip_by_value(x,1e-10,1.0)ses ...

  8. tf随笔-5

    # -*- coding: utf-8 -*-import tensorflow as tfw1=tf.Variable(tf.random_normal([2,6],stddev=1))w2=tf. ...

  9. TF随笔-4

    >>> import tensorflow as tf>>> a=tf.constant([[1,2],[3,4]])>>> b=tf.const ...

随机推荐

  1. 阿里、腾讯、京东、微软,各家算法&数据挖掘岗位面经大起底!

    阿里.腾讯.京东.微软,各家算法&数据挖掘岗位面经大起底! 2016-02-24 36大数据 36大数据 作者: 江少华 摘要: 从2015年8月到2015年10月,花了3个月时间找工作,先后 ...

  2. CRM项目问答总结

    1. 通过ChangeList封装好多数据 DA: 在stark组件中,有五个封装的大类: class FilterOption(object): ----用于封装组合搜索的配置信息(数据库字段,是否 ...

  3. JVM(4) 虚拟机性能监控与故障处理工具

    1. Sun JDK 监控和故障处理工具 1)jps:JVM process Status Tool,显示指定系统内所有的HotSpot虚拟机进程.可以列出正在运行的虚拟机进程,并显示虚拟机执行主类( ...

  4. hadoop11----socket

    package cn.itcast.bigdata.socket; import java.io.BufferedReader; import java.io.InputStream; import ...

  5. 用OpenCV实现Photoshop算法(三): 曲线调整

    http://blog.csdn.net/c80486/article/details/52499919 系列文章: 用OpenCV实现Photoshop算法(一): 图像旋转 用OpenCV实现Ph ...

  6. FTP vsftp 安装、管理

    FTP简介 FTP是File Transfer Protocol(文件传输协议)的英文简称,而中文简称为文传协议,用户Internet上的控制文件的双向传输. FTP的主要作用,就是让用户链接上一个远 ...

  7. jQuery音乐播放器jPlayer

    在线演示 本地下载

  8. Linux下Wireshark的网络抓包使用方法

    Wireshark是世界上最流行的网络分析工具.这个强大的工具可以捕捉网络中的数据,并为用户提供关于网络和上层协议的各种信息.与很多其他网络工具一样,Wireshark也使用pcap network ...

  9. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

  10. EF Code-First 学习之旅 级联删除

    级联删除是当删除主记录的时候会自动删除依赖的记录或者设置外键属性为null public class Student { public Student() { } public int Student ...