【bzoj3631】[JLOI2014]松鼠的新家 LCA+差分数组
题目描述
输入
输出
样例输入
5
1 4 5 3 2
1 2
2 4
2 3
4 5
样例输出
1
2
1
2
1
提示
2<= n <=300000
题解
很简单的一道题,用了下差分数组。
先求出两个点的最近公共祖先(这里使用树链剖分,细节少),然后打标记,不难理解。
最后把子节点的标记累加到根节点即可。
注意每次走的路径都有重复的,所以算完后还要减掉一遍。
#include <stdio.h>
#include <algorithm>
using namespace std;
int a[300001] , head[300001] , to[600001] , next[600001] , cnt , fa[300001] , deep[300001] , si[300001] , bl[300001] , tot , s[300001] , q[300001];
void add(int x , int y)
{
to[++cnt] = y;
next[cnt] = head[x];
head[x] = cnt;
}
void dfs1(int x)
{
int i , y;
si[x] = 1;
for(i = head[x] ; i ; i = next[i])
{
y = to[i];
if(y != fa[x])
{
fa[y] = x;
deep[y] = deep[x] + 1;
dfs1(y);
si[x] += si[y];
}
}
}
void dfs2(int x , int c)
{
int k = 0 , i , y;
q[++tot] = x;
bl[x] = c;
for(i = head[x] ; i ; i = next[i])
{
y = to[i];
if(y != fa[x] && si[y] > si[k])
k = y;
}
if(k != 0)
{
dfs2(k , c);
for(i = head[x] ; i ; i = next[i])
{
y = to[i];
if(y != fa[x] && y != k)
dfs2(y , y);
}
}
}
int lca(int x , int y)
{
while(bl[x] != bl[y])
{
if(deep[bl[x]] < deep[bl[y]])
swap(x , y);
x = fa[bl[x]];
}
if(deep[x] < deep[y])
return x;
return y;
}
int main()
{
int n , i , x , y , k;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &a[i]);
for(i = 1 ; i < n ; i ++ )
{
scanf("%d%d" , &x , &y);
add(x , y);
add(y , x);
}
dfs1(1);
dfs2(1 , 1);
for(i = 2 ; i <= n ; i ++ )
{
k = lca(a[i] , a[i - 1]);
s[a[i]] ++ ;
s[a[i - 1]] ++ ;
s[k] -- ;
s[fa[k]] -- ;
}
for(i = n ; i >= 2 ; i -- )
s[fa[q[i]]] += s[q[i]];
for(i = 2 ; i <= n ; i ++ )
s[a[i]] -- ;
for(i = 1 ; i <= n ; i ++ )
printf("%d\n" , s[i]);
return 0;
}
【bzoj3631】[JLOI2014]松鼠的新家 LCA+差分数组的更多相关文章
- bzoj3631 [JLOI2014]松鼠的新家——树上差分
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3631 树上差分:注意路径的结尾被多算了一次,最后要减去(不能提前减). 代码如下: #inc ...
- [JLOI2014] 松鼠的新家 (lca/树上差分)
[JLOI2014]松鼠的新家 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在 ...
- P3258[JLOI2014]松鼠的新家(LCA 树上差分)
P3258 [JLOI2014]松鼠的新家 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他 ...
- [Bzoj3631][JLOI2014]松鼠的新家 (树上前缀和)
3631: [JLOI2014]松鼠的新家 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2350 Solved: 1212[Submit][Sta ...
- [BZOJ3631]:[JLOI2014]松鼠的新家(LCA+树上差分)
题目传送门 题目描述: 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在“树”上.松鼠想邀 ...
- BZOJ3631 [JLOI2014]松鼠的新家 【树上差分】
题目 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在"树"上.松鼠想 ...
- BZOJ 3631: [JLOI2014]松鼠的新家 树上差分 + LCA
Description 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在“树”上.松鼠想邀 ...
- bzoj3631[JLOI2014 松鼠的新家 倍增lca+差分
裸的树上差分+倍增lca 每次从起点到终点左闭右开,这就有一个小技巧,要找到右端点向左端点走的第一步,然后差分就好了 #include<cstdio> #include<cstrin ...
- bzoj3631: [JLOI2014]松鼠的新家(LCA+差分)
题目大意:一棵树,以一定顺序走完n个点,求每个点经过多少遍 可以树链剖分,也可以直接在树上做差分序列的标记 后者打起来更舒适一点.. 具体实现: 先求x,y的lca,且dep[x]<dep[y] ...
随机推荐
- [AGC011F] Train Service Planning [线段树优化dp+思维]
思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...
- Chrome模拟平板调试
1. 按F12,打开开发者工具,右上角,点击红圈中的标志.然后在弹出的面板中点击'Emulation'. 2. 会看到左侧的四个选项卡 Device 设备.Screen 屏幕.User Agent ...
- javasript 字符串 数组操作
Javascript中经常涉及到对字符串和数组的处理,今天总结一下具体的用法 一 操作字符串 String对象有很多函数,可以以不同的方式访问和操作字符串,具体方法如下: charAt(index ...
- hdu1421搬寝室(动态规划)
搬寝室 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...
- SQL Sever查询语句集锦
一. 简单查询简单的Transact-SQL查询只包括选择列表.FROM子句和WHERE子句.它们分别说明所查询列.查询的表或视图.以及搜索条件等. 例如,下面的语句查询testtable表中姓名为“ ...
- python 终极篇 --- django 路由系统
URL配置 基本格式: from django.conf.urls import url urlpattern ...
- CryptoZombies学习笔记——Lesson1
CryptoZombies是一个学习以太坊开发的平台,我将在这里记录学习过程中的一些笔记. 课程网址:cryptozombies.io 首先是第一课——Lesson1:Making the Zombi ...
- SpringCloud IDEA 教学 (一) Eureka的简介与服务注册中心的建立
写在开头 SpringCloud进来成为业界排名靠前的微服务框架,最核心功能就是搭建微服务,并在此基础上衍生出一系列功能,如断路器(Hystrix).断路监控.管理配置.Zuul.OAuth2等功能. ...
- SPOJ 694 Distinct Substrings/SPOJ 705 New Distinct Substrings(后缀数组)
Given a string, we need to find the total number of its distinct substrings. Input T- number of test ...
- Python中的global和nonlocal
在Python中,一个变量的scope范围从小到大分成4部分:Local Scope(也可以看成是当前函数形成的scope),Enclosing Scope(简单来说,就是外层函数形成的scope), ...