Codeforces 96D Volleyball(最短路径)
Petya loves volleyball very much. One day he was running late for a volleyball match. Petya hasn't bought his own car yet, that's why he had to take a taxi. The city has n junctions, some of which are connected by two-way roads. The length of each road is defined by some positive integer number of meters; the roads can have different lengths.
Initially each junction has exactly one taxi standing there. The taxi driver from the i-th junction agrees to drive Petya (perhaps through several intermediate junctions) to some other junction if the travel distance is not more than ti meters. Also, the cost of the ride doesn't depend on the distance and is equal to ci bourles. Taxis can't stop in the middle of a road. Each taxi can be used no more than once. Petya can catch taxi only in the junction, where it stands initially.
At the moment Petya is located on the junction x and the volleyball stadium is on the junction y. Determine the minimum amount of money Petya will need to drive to the stadium.
The first line contains two integers n and m (1 ≤ n ≤ 1000, 0 ≤ m ≤ 1000). They are the number of junctions and roads in the city correspondingly. The junctions are numbered from 1 to n, inclusive. The next line contains two integers x and y (1 ≤ x, y ≤ n). They are the numbers of the initial and final junctions correspondingly. Next m lines contain the roads' description. Each road is described by a group of three integers ui, vi, wi (1 ≤ ui, vi ≤ n, 1 ≤ wi ≤ 109) — they are the numbers of the junctions connected by the road and the length of the road, correspondingly. The next n lines contain n pairs of integers ti and ci (1 ≤ ti, ci ≤ 109), which describe the taxi driver that waits at the i-th junction — the maximum distance he can drive and the drive's cost. The road can't connect the junction with itself, but between a pair of junctions there can be more than one road. All consecutive numbers in each line are separated by exactly one space character.
If taxis can't drive Petya to the destination point, print "-1" (without the quotes). Otherwise, print the drive's minimum cost.
Please do not use the %lld specificator to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specificator.
题目大意:给n个点,m条双向边,每条路均有一个距离,从一个点x出发,最多能花费c[x]走距离t[x]的路,求从起点到终点的最小花费。
官方题解1:
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std; typedef long long LL; const int MAXN = ;
const int MAXM = ;
int n, m, x, y; void tle() {
while() ;
} struct Shortest_path {
int head[MAXN], inque[MAXN];
int next[MAXM], to[MAXM], cost[MAXM];
int ecnt, st, ed;
LL dis[MAXN]; void SPFA() {
queue<int> Q;
Q.push(st);
memset(inque, , sizeof(inque));
memset(dis, , sizeof(dis));
dis[st] = ;
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inque[u] = false;
for(int p = head[u]; p; p = next[p]) {
int v = to[p];
if(dis[v] < || dis[v] > dis[u] + cost[p]) {
dis[v] = dis[u] + cost[p];
//printf("%d %I64d\n",v,dis[v]);
if(!inque[v]) {
inque[v] = true;
Q.push(v);
}
}
}
}
} void addEdge(int u, int v, int c) {
to[ecnt] = v; cost[ecnt] = c;
next[ecnt] = head[u]; head[u] = ecnt++;
//printf("%d->%d %d\n",u,v,c);
//if(ecnt == MAXM) tle();
} void init(int ss, int tt) {
st = ss; ed = tt;
ecnt = ;
memset(head, , sizeof(head));
} LL solve() {
SPFA();
return dis[ed];
}
} G; const int M = MAXN * ; struct Tree {
int head[MAXN], c[MAXN], t[MAXN];
int small[MAXN];
int next[M], to[M], cost[M];
int ecnt; void dfs(int root, int u, int rest) {
for(int p = head[u]; p; p = next[p]) {
int v = to[p];
if(rest - cost[p] < small[v]) continue;
if(rest - cost[p] >= ) {
G.addEdge(root, v, c[root]);
small[v] = rest - cost[p];
if(rest) dfs(root, v, rest - cost[p]);
}
}
} void addEdge(int u, int v, int cc) {
to[ecnt] = v; cost[ecnt] = cc;
next[ecnt] = head[u]; head[u] = ecnt++;
//printf("%d->%d %d\n",u,v,cc);
} void init() {
ecnt = ;
memset(head, , sizeof(head));
} void make_G() {
for(int i = ; i <= n; ++i) {
memset(small, , sizeof(small));
small[i] = 0x7fffffff;
dfs(i, i, t[i]);
}
}
} T; int main() {
while(scanf("%d%d", &n, &m) != EOF) {
scanf("%d%d", &x, &y);
G.init(x, y);
T.init();
int u, v, c;
for(int i = ; i < m; ++i) {
scanf("%d%d", &u, &v);
scanf("%d", &c);
T.addEdge(u, v, c);
T.addEdge(v, u, c);
}
for(int i = ; i <= n; ++i) {
scanf("%d", &T.t[i]);
scanf("%d", &T.c[i]);
}
T.make_G();
printf("%I64d\n", G.solve());
}
}
献上真·AC代码,这个应该没问题了,理论上来说上面的那个代码可以卡(可以卡边数卡爆),实际上可以直接用SPFA求第一张图的最短路然后再判断某点x是否能到底某点y,SPFA在稀疏图上常数灰常小,在这提上是灰常适用的。
PS:下面的两个类实际上可以合在一起,但是我懒得搞了就这样吧……
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std; typedef long long LL; const int MAXN = ;
const int MAXM = ;
int n, m, x, y; void tle() {
while() ;
} struct Shortest_path {
int head[MAXN], inque[MAXN];
int next[MAXM], to[MAXM], cost[MAXM];
int ecnt, st, ed;
LL dis[MAXN]; void SPFA() {
queue<int> Q;
Q.push(st);
memset(inque, , sizeof(inque));
memset(dis, , sizeof(dis));
dis[st] = ;
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inque[u] = false;
for(int p = head[u]; p; p = next[p]) {
int v = to[p];
if(dis[v] < || dis[v] > dis[u] + cost[p]) {
dis[v] = dis[u] + cost[p];
//printf("%d %I64d\n",v,dis[v]);
if(!inque[v]) {
inque[v] = true;
Q.push(v);
}
}
}
}
} void addEdge(int u, int v, int c) {
to[ecnt] = v; cost[ecnt] = c;
next[ecnt] = head[u]; head[u] = ecnt++;
//printf("%d->%d %d\n",u,v,c);
//if(ecnt == MAXM) tle();
} void init(int ss, int tt) {
st = ss; ed = tt;
ecnt = ;
memset(head, , sizeof(head));
} LL solve() {
SPFA();
return dis[ed];
}
} G; const int M = MAXN * ; struct Tree {
int head[MAXN], inque[MAXN], c[MAXN], t[MAXN];
int next[M], to[M], cost[M];
int ecnt;
LL dis[MAXN]; void SPFA(int st) {
queue<int> Q;
Q.push(st);
memset(inque, , sizeof(inque));
memset(dis, , sizeof(dis));
dis[st] = ;
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inque[u] = false;
for(int p = head[u]; p; p = next[p]) {
int v = to[p];
if(dis[v] < || dis[v] > dis[u] + cost[p]) {
dis[v] = dis[u] + cost[p];
//printf("%d %I64d\n",v,dis[v]);
if(!inque[v]) {
inque[v] = true;
Q.push(v);
}
}
}
}
} void addEdge(int u, int v, int cc) {
to[ecnt] = v; cost[ecnt] = cc;
next[ecnt] = head[u]; head[u] = ecnt++;
//printf("%d->%d %d\n",u,v,cc);
} void init() {
ecnt = ;
memset(head, , sizeof(head));
} void make_G() {
for(int i = ; i <= n; ++i) {
SPFA(i);
for(int j = ; j <= n; ++j) {
if(i == j) continue;
if(dis[j] >= && dis[j] <= t[i]) {
G.addEdge(i, j, c[i]);
}
}
}
}
} T; int main() {
int i;
while(scanf("%d%d", &n, &m) != EOF) {
scanf("%d%d", &x, &y);
G.init(x, y);
T.init();
int u, v, c;
for(i = ; i < m; ++i) {
scanf("%d%d", &u, &v);
scanf("%d", &c);
T.addEdge(u, v, c);
T.addEdge(v, u, c);
}
for(i = ; i <= n; ++i) {
scanf("%d", &T.t[i]);
scanf("%d", &T.c[i]);
}
T.make_G();
printf("%I64d\n", G.solve());
}
}
Codeforces 96D Volleyball(最短路径)的更多相关文章
- Codeforces 95C Volleyball(最短路)
题目链接:http://codeforces.com/problemset/problem/95/C C. Volleyball time limit per test 2 seconds memor ...
- CF - 96D - Volleyball
题意:一个无向图,有n个点,m条边,每条边有距离w,每个点有两个属性(1.从这点出发能到的最远距离,2.从这点出发的费用(不论走多远都一样)),一个人要从点x到点y,问最小费用是多少. 题目链接:ht ...
- Codeforces Beta Round #77 (Div. 1 Only) C. Volleyball (最短路)
题目链接:http://codeforces.com/contest/95/problem/C 思路:首先dijkstra预处理出每个顶点到其他顶点的最短距离,然后如果该出租车到某个顶点的距离小于等于 ...
- 【codeforces 95C】Volleyball
[题目链接]:http://codeforces.com/problemset/problem/95/C [题意] 给你n个点,m条边; 每个点有一辆出租车; 可以到达离这个点距离不超过u的点,且在这 ...
- Codeforces 601A:The Two Routes 宽搜最短路径
A. The Two Routes time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- Codeforces Training S03E01泛做
http://codeforces.com/gym/101078 和ysy.方老师一起打的virtual 打的不是很好...下面按过题顺序放一下过的题的题(dai)解(ma). A 给两个1~n的排列 ...
- Codeforces Round #130 (Div. 2) C. Police Station
题目链接:http://codeforces.com/contest/208/problem/C 思路:题目要求的是经过1~N的最短路上的某个点的路径数 / 最短路的条数的最大值.一开始我是用spf ...
- Codeforces Round #103 (Div. 2) D. Missile Silos(spfa + 枚举边)
题目链接:http://codeforces.com/problemset/problem/144/D 思路:首先spfa求出中心点S到其余每个顶点的距离,统计各顶点到中心点的距离为L的点,然后就是要 ...
随机推荐
- Spring知识点小结汇总
Spring部分 1.谈谈你对spring IOC和DI的理解,它们有什么区别? IoC Inverse of Control 反转控制的概念,就是将原本在程序中手动创建UserService对象的控 ...
- http请求常用的状态码
常见的http请求响应的状态码 一些常见的状态码为: 200 – 服务器成功返回网页 404 – 请求的网页不存在 503 – 服务不可用 1xx(临时响应) 表示临时响应并需要请求者继续执行操作的状 ...
- 【模板】RMQ(计算区间最值)
①一维RMQ (1) dp[i,j] 表示从第i个数起连续2j个数中的(最大值min.最小值max.最大公约数gcd……),通过更改下列代码中的红色函数即可实现. (2) b数组放置所需查询的数列. ...
- 08.nextcloud搭建
由于公司用的nfs文件共享系统满足不了权限需求,测试nextcloud是否符合要求 参考博客: https://www.cnblogs.com/davidz/articles/9686716.html ...
- linux系统基础之---文件系统(基于centos7.4 1708)
- swift3.0 保存图片到本地,申请权限
1.info中写上 <key>NSCameraUsageDescription</key> <string>需要您的同意才能读取媒体资料库</string&g ...
- sql查询关于时间的一些汇总
今天的所有数据:select * from 表名 where DateDiff(dd,datetime类型字段,getdate())=0 昨天的所有数据:select * from 表名 where ...
- 解决 LLVM 错误 fatal error: ‘csignal’ file not found
/Users/exchen/Downloads/Unity-iPhone/Classes/main.mm:3:10: fatal error: ‘csignal’ file not found#inc ...
- php连接数据库(一)
1.php链接数据库: 1.链接数据库 2.判断是否连接成功 3.设置字符集 4.选择数据库 5.准备SQL语句 6.发送SQL语句 7.处理结果集 8.释放资源(关闭数据库) $result = m ...
- java 学习知识汇总
一:常见模式与工具 学习Java技术体系,设计模式,流行的框架与组件是必不可少的: 常见的设计模式,编码必备 Spring5,做应用必不可少的最新框架 MyBatis,玩数据库必不可少的组件 二:工程 ...