Codeforces 96D Volleyball(最短路径)
Petya loves volleyball very much. One day he was running late for a volleyball match. Petya hasn't bought his own car yet, that's why he had to take a taxi. The city has n junctions, some of which are connected by two-way roads. The length of each road is defined by some positive integer number of meters; the roads can have different lengths.
Initially each junction has exactly one taxi standing there. The taxi driver from the i-th junction agrees to drive Petya (perhaps through several intermediate junctions) to some other junction if the travel distance is not more than ti meters. Also, the cost of the ride doesn't depend on the distance and is equal to ci bourles. Taxis can't stop in the middle of a road. Each taxi can be used no more than once. Petya can catch taxi only in the junction, where it stands initially.
At the moment Petya is located on the junction x and the volleyball stadium is on the junction y. Determine the minimum amount of money Petya will need to drive to the stadium.
The first line contains two integers n and m (1 ≤ n ≤ 1000, 0 ≤ m ≤ 1000). They are the number of junctions and roads in the city correspondingly. The junctions are numbered from 1 to n, inclusive. The next line contains two integers x and y (1 ≤ x, y ≤ n). They are the numbers of the initial and final junctions correspondingly. Next m lines contain the roads' description. Each road is described by a group of three integers ui, vi, wi (1 ≤ ui, vi ≤ n, 1 ≤ wi ≤ 109) — they are the numbers of the junctions connected by the road and the length of the road, correspondingly. The next n lines contain n pairs of integers ti and ci (1 ≤ ti, ci ≤ 109), which describe the taxi driver that waits at the i-th junction — the maximum distance he can drive and the drive's cost. The road can't connect the junction with itself, but between a pair of junctions there can be more than one road. All consecutive numbers in each line are separated by exactly one space character.
If taxis can't drive Petya to the destination point, print "-1" (without the quotes). Otherwise, print the drive's minimum cost.
Please do not use the %lld specificator to read or write 64-bit integers in С++. It is preferred to use cin, cout streams or the %I64d specificator.
题目大意:给n个点,m条双向边,每条路均有一个距离,从一个点x出发,最多能花费c[x]走距离t[x]的路,求从起点到终点的最小花费。
官方题解1:
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std; typedef long long LL; const int MAXN = ;
const int MAXM = ;
int n, m, x, y; void tle() {
while() ;
} struct Shortest_path {
int head[MAXN], inque[MAXN];
int next[MAXM], to[MAXM], cost[MAXM];
int ecnt, st, ed;
LL dis[MAXN]; void SPFA() {
queue<int> Q;
Q.push(st);
memset(inque, , sizeof(inque));
memset(dis, , sizeof(dis));
dis[st] = ;
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inque[u] = false;
for(int p = head[u]; p; p = next[p]) {
int v = to[p];
if(dis[v] < || dis[v] > dis[u] + cost[p]) {
dis[v] = dis[u] + cost[p];
//printf("%d %I64d\n",v,dis[v]);
if(!inque[v]) {
inque[v] = true;
Q.push(v);
}
}
}
}
} void addEdge(int u, int v, int c) {
to[ecnt] = v; cost[ecnt] = c;
next[ecnt] = head[u]; head[u] = ecnt++;
//printf("%d->%d %d\n",u,v,c);
//if(ecnt == MAXM) tle();
} void init(int ss, int tt) {
st = ss; ed = tt;
ecnt = ;
memset(head, , sizeof(head));
} LL solve() {
SPFA();
return dis[ed];
}
} G; const int M = MAXN * ; struct Tree {
int head[MAXN], c[MAXN], t[MAXN];
int small[MAXN];
int next[M], to[M], cost[M];
int ecnt; void dfs(int root, int u, int rest) {
for(int p = head[u]; p; p = next[p]) {
int v = to[p];
if(rest - cost[p] < small[v]) continue;
if(rest - cost[p] >= ) {
G.addEdge(root, v, c[root]);
small[v] = rest - cost[p];
if(rest) dfs(root, v, rest - cost[p]);
}
}
} void addEdge(int u, int v, int cc) {
to[ecnt] = v; cost[ecnt] = cc;
next[ecnt] = head[u]; head[u] = ecnt++;
//printf("%d->%d %d\n",u,v,cc);
} void init() {
ecnt = ;
memset(head, , sizeof(head));
} void make_G() {
for(int i = ; i <= n; ++i) {
memset(small, , sizeof(small));
small[i] = 0x7fffffff;
dfs(i, i, t[i]);
}
}
} T; int main() {
while(scanf("%d%d", &n, &m) != EOF) {
scanf("%d%d", &x, &y);
G.init(x, y);
T.init();
int u, v, c;
for(int i = ; i < m; ++i) {
scanf("%d%d", &u, &v);
scanf("%d", &c);
T.addEdge(u, v, c);
T.addEdge(v, u, c);
}
for(int i = ; i <= n; ++i) {
scanf("%d", &T.t[i]);
scanf("%d", &T.c[i]);
}
T.make_G();
printf("%I64d\n", G.solve());
}
}
献上真·AC代码,这个应该没问题了,理论上来说上面的那个代码可以卡(可以卡边数卡爆),实际上可以直接用SPFA求第一张图的最短路然后再判断某点x是否能到底某点y,SPFA在稀疏图上常数灰常小,在这提上是灰常适用的。
PS:下面的两个类实际上可以合在一起,但是我懒得搞了就这样吧……
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std; typedef long long LL; const int MAXN = ;
const int MAXM = ;
int n, m, x, y; void tle() {
while() ;
} struct Shortest_path {
int head[MAXN], inque[MAXN];
int next[MAXM], to[MAXM], cost[MAXM];
int ecnt, st, ed;
LL dis[MAXN]; void SPFA() {
queue<int> Q;
Q.push(st);
memset(inque, , sizeof(inque));
memset(dis, , sizeof(dis));
dis[st] = ;
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inque[u] = false;
for(int p = head[u]; p; p = next[p]) {
int v = to[p];
if(dis[v] < || dis[v] > dis[u] + cost[p]) {
dis[v] = dis[u] + cost[p];
//printf("%d %I64d\n",v,dis[v]);
if(!inque[v]) {
inque[v] = true;
Q.push(v);
}
}
}
}
} void addEdge(int u, int v, int c) {
to[ecnt] = v; cost[ecnt] = c;
next[ecnt] = head[u]; head[u] = ecnt++;
//printf("%d->%d %d\n",u,v,c);
//if(ecnt == MAXM) tle();
} void init(int ss, int tt) {
st = ss; ed = tt;
ecnt = ;
memset(head, , sizeof(head));
} LL solve() {
SPFA();
return dis[ed];
}
} G; const int M = MAXN * ; struct Tree {
int head[MAXN], inque[MAXN], c[MAXN], t[MAXN];
int next[M], to[M], cost[M];
int ecnt;
LL dis[MAXN]; void SPFA(int st) {
queue<int> Q;
Q.push(st);
memset(inque, , sizeof(inque));
memset(dis, , sizeof(dis));
dis[st] = ;
while(!Q.empty()) {
int u = Q.front(); Q.pop();
inque[u] = false;
for(int p = head[u]; p; p = next[p]) {
int v = to[p];
if(dis[v] < || dis[v] > dis[u] + cost[p]) {
dis[v] = dis[u] + cost[p];
//printf("%d %I64d\n",v,dis[v]);
if(!inque[v]) {
inque[v] = true;
Q.push(v);
}
}
}
}
} void addEdge(int u, int v, int cc) {
to[ecnt] = v; cost[ecnt] = cc;
next[ecnt] = head[u]; head[u] = ecnt++;
//printf("%d->%d %d\n",u,v,cc);
} void init() {
ecnt = ;
memset(head, , sizeof(head));
} void make_G() {
for(int i = ; i <= n; ++i) {
SPFA(i);
for(int j = ; j <= n; ++j) {
if(i == j) continue;
if(dis[j] >= && dis[j] <= t[i]) {
G.addEdge(i, j, c[i]);
}
}
}
}
} T; int main() {
int i;
while(scanf("%d%d", &n, &m) != EOF) {
scanf("%d%d", &x, &y);
G.init(x, y);
T.init();
int u, v, c;
for(i = ; i < m; ++i) {
scanf("%d%d", &u, &v);
scanf("%d", &c);
T.addEdge(u, v, c);
T.addEdge(v, u, c);
}
for(i = ; i <= n; ++i) {
scanf("%d", &T.t[i]);
scanf("%d", &T.c[i]);
}
T.make_G();
printf("%I64d\n", G.solve());
}
}
Codeforces 96D Volleyball(最短路径)的更多相关文章
- Codeforces 95C Volleyball(最短路)
题目链接:http://codeforces.com/problemset/problem/95/C C. Volleyball time limit per test 2 seconds memor ...
- CF - 96D - Volleyball
题意:一个无向图,有n个点,m条边,每条边有距离w,每个点有两个属性(1.从这点出发能到的最远距离,2.从这点出发的费用(不论走多远都一样)),一个人要从点x到点y,问最小费用是多少. 题目链接:ht ...
- Codeforces Beta Round #77 (Div. 1 Only) C. Volleyball (最短路)
题目链接:http://codeforces.com/contest/95/problem/C 思路:首先dijkstra预处理出每个顶点到其他顶点的最短距离,然后如果该出租车到某个顶点的距离小于等于 ...
- 【codeforces 95C】Volleyball
[题目链接]:http://codeforces.com/problemset/problem/95/C [题意] 给你n个点,m条边; 每个点有一辆出租车; 可以到达离这个点距离不超过u的点,且在这 ...
- Codeforces 601A:The Two Routes 宽搜最短路径
A. The Two Routes time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces Round #368 (Div. 2)
直达–>Codeforces Round #368 (Div. 2) A Brain’s Photos 给你一个NxM的矩阵,一个字母代表一种颜色,如果有”C”,”M”,”Y”三种中任意一种就输 ...
- Codeforces Training S03E01泛做
http://codeforces.com/gym/101078 和ysy.方老师一起打的virtual 打的不是很好...下面按过题顺序放一下过的题的题(dai)解(ma). A 给两个1~n的排列 ...
- Codeforces Round #130 (Div. 2) C. Police Station
题目链接:http://codeforces.com/contest/208/problem/C 思路:题目要求的是经过1~N的最短路上的某个点的路径数 / 最短路的条数的最大值.一开始我是用spf ...
- Codeforces Round #103 (Div. 2) D. Missile Silos(spfa + 枚举边)
题目链接:http://codeforces.com/problemset/problem/144/D 思路:首先spfa求出中心点S到其余每个顶点的距离,统计各顶点到中心点的距离为L的点,然后就是要 ...
随机推荐
- mybatis传单个参数,和<if>标签同时使用的问题
// Mapper.java EmerEvent selectByAlarmId(Integer alarmId); // Mapper.xml <select id="selectB ...
- hdu_5187_zhx's contest
Problem Description As one of the most powerful brushes, zhx is required to give his juniors n probl ...
- 10.31课程.this指向
作用域: 浏览器给js的生存环境(栈). 作用域链: js中的关键字例如var.function...都可以提前声明,然后js由上到下逐级执行,有就使用,没有就在它的父级元素中查找.这就叫做作用域链. ...
- webuploader的一个页面多个上传按钮实例
借鉴一位大佬的demo 附上他的github地址https://github.com/lishuqi 我把他的cxuploader.js改了不需要预览 直接上传图片后拿到回传地址给img标签显示图 ...
- Java代码注释
单行注释: 选中代码,按下ctrl+/ 一条代码单行注释:选中一条代码按下ctrl+/,则为一条代码单行注释: 多条代码单行注释:选中多条代码按下ctrl+/,则为多条代码单行注释: 取消注释:对已经 ...
- 『Python基础-7』for循环 & while循环
『Python基础-7』for循环 & while循环 目录: 循环语句 for循环 while循环 循环的控制语句: break,continue,pass for...else 和 whi ...
- ubuntu 防止软件包自动更新
阻止软件包升级 有两种方法阻止软件包升级,使用dpkg,或者在Woody中使用APT. 使用dpkg,首先导出软件包选择列表: dpkg --get-selections \* > select ...
- c. 求阶乘和的方法(N的值不能太大)初学者
#include <stdio.h> int main() { int n,i; int a=1; //a设置为一个数的阶乘 int b; // b 设置为阶乘的和 for(i ...
- vue跨域访问
第一次创建vue项目,画完静态页面一切顺利,准备和后台进行联调,问题来了,无论怎么调试使用Axios,jQuary还是使用原生的Ajax请求都访问不通(前提条件,另外一个人的电脑当成服务器,进行访问) ...
- R tutorial
http://www.clemson.edu/economics/faculty/wilson/R-tutorial/Introduction.html https://www.youtube.com ...