链接:

https://www.nowcoder.com/acm/contest/139/I

题意:

给出一个n(1≤n≤5e4)个字符的字符串s(si ∈ {a,b,c}),
求最多可以从n*(n+1)/2个子串中选出多少个子串,使得它们互不同构。
同构是指存在一个映射f,使得字符串a的每个字符都可以映射成字符串b的对应字符。
例如ab与ac、ba、bc、ca、cb都是同构的。

分析:

以字符串abba为例:
现在只考虑这个字符串的2个子串ab和ba,如果不考虑重构,有2个子串,否则,只有1个子串。
这时,我们可以用全排列枚举出所有重构的字符串:
abba
acca
baab
bccb
caac
cbbc
由于每一个串都有2个子串,所以上面的6个同构串共有12个子串。
如果去掉重复的子串,则最终会剩下6个互不相同的子串。
即第一个字符串abba的ab被第三个字符串baab的ab消掉了,
第二个字符串acca的ac被第五个字符串caac的ac消掉了......
可以发现,剩下的6个子串正是ab的6种同构。
所以我们可以把一个字符串的六种同构拼接在一起,然后用后缀数组求出重复的子串个数height。
为了避免拼接的首尾字符对结果产生影响,要在拼接的每一段后面每次都加上一个新的字符。
设6个同构串的所有子串个数(6*(n*(n+1)/2))为sum。
则(sum-height)/6就是一个字符串里互不重构的子串个数。

但还有一个特殊情况:
只考虑字符串aaabbb的两个子串aaa和bbb。
如果采取上面的做法,最终会留下3个互不相同的子串aaa、bbb和ccc,即重复的子串个数为9。
这时答案是(12-9)/6=0,很显然这样是错误的。
原因是aaa的同构子串只有3种而不是6种,即单一字符的字符串的每个同构串都被多减了一次。
这时,我们可以找出一个字符串里最长的单一字符的字符串str,设它的长度为most。
因为比str短的单一字符的字符串都是str的一部分的重构,所以不需要考虑。
则正确的答案应该是(sum - height + 3*most)/6。(注意例子里aaa的长度视为1而不是3)

代码:

 #include <cstdio>
#include <algorithm>
using namespace std; const int MAXS = 1e6 + ;
int sa[MAXS], mem[MAXS], mem2[MAXS], amt[MAXS]; // sa:后缀数组
void build_sa(char* s, int n, int m) { // n:字符串s的长度,每个字符值须小于m
mem[n] = mem2[n] = -;
int i, *x = mem, *y = mem2;
for(i = ; i < m; i++) amt[i] = ;
for(i = ; i < n; i++) amt[x[i]=s[i]]++;
for(i = ; i < m; i++) amt[i] += amt[i-];
for(i = n-; i >= ; i--) sa[--amt[x[i]]] = i;
for(int k = ; k <= n; k <<= ) {
int p = ;
for(i = n-k; i < n; i++) y[p++] = i;
for(i = ; i < n; i++) if(sa[i] >= k) y[p++] = sa[i]-k;
for(i = ; i < m; i++) amt[i] = ;
for(i = ; i < n; i++) amt[x[y[i]]]++;
for(i = ; i < m; i++) amt[i] += amt[i-];
for(i = n-; i >= ; i--) sa[--amt[x[y[i]]]] = y[i];
int* t = x; x = y; y = t;
p = ; x[sa[]] = ;
for(i = ; i < n; i++)
x[sa[i]] = y[sa[i-]]==y[sa[i]]&&y[sa[i-]+k]==y[sa[i]+k]?p-:p++;
if(p >= n) break;
m = p;
}
}
int idx[MAXS], height[MAXS]; // height:sa[i-1]与sa[i]的最长公共前缀
void get_height(char* s, int n) { // n:字符串s的长度
for(int i = ; i < n; i++) idx[sa[i]] = i;
for(int k = , i = ; i < n; i++) {
if(idx[i] - < ) continue;
if(k) k--;
int j = sa[idx[i]-];
while(s[i+k] == s[j+k]) k++;
height[idx[i]] = k;
}
} char s[MAXS], os[MAXS]; int main() {
int n;
while(~scanf("%d%s", &n, os)) {
int p = , en = , a[] = {, , };
do {
for(int i = ; i < n; i++) s[p++] = a[os[i]-'a'];
s[p++] = en++;
} while(next_permutation(a, a+));
build_sa(s, p, );
get_height(s, p);
long long ans = 6LL * n*(n+)/;
for(int i = ; i < p; i++) ans -= height[i];
int most = , len = ;
for(int i = ; i <= n; i++) {
if(os[i] == os[i-]) len++;
else most = max(most, len), len = ;
}
printf("%lld\n", (ans + *most) / );
}
return ;
}

牛客网多校训练第一场 I - Substring(后缀数组 + 重复处理)的更多相关文章

  1. 牛客网多校训练第一场 J - Different Integers(树状数组 + 问题转换)

    链接: https://www.nowcoder.com/acm/contest/139/J 题意: 给出n个整数的序列a(1≤ai≤n)和q个询问(1≤n,q≤1e5),每个询问包含两个整数L和R( ...

  2. 牛客网多校训练第一场 F - Sum of Maximum(容斥原理 + 拉格朗日插值法)

    链接: https://www.nowcoder.com/acm/contest/139/F 题意: 分析: 转载自:http://tokitsukaze.live/2018/07/19/2018ni ...

  3. 牛客网多校训练第一场 E - Removal(线性DP + 重复处理)

    链接: https://www.nowcoder.com/acm/contest/139/E 题意: 给出一个n(1≤n≤1e5)个整数(范围是1至10)的序列,求从中移除m(1≤m≤min(n-1, ...

  4. 牛客网多校训练第一场 D - Two Graphs

    链接: https://www.nowcoder.com/acm/contest/139/D 题意: 两个无向简单图都有n(1≤n≤8)个顶点,图G1有m1条边,图G2有m2条边,问G2有多少个子图与 ...

  5. 牛客网多校训练第一场 B - Symmetric Matrix(dp)

    链接: https://www.nowcoder.com/acm/contest/139/B 题意: 求满足以下条件的n*n矩阵A的数量模m:A(i,j) ∈ {0,1,2}, 1≤i,j≤n.A(i ...

  6. 牛客网多校训练第一场 A - Monotonic Matrix(Lindström–Gessel–Viennot lemma)

    链接: https://www.nowcoder.com/acm/contest/139/A 题意: 求满足以下条件的n*m矩阵A的数量模(1e9+7):A(i,j) ∈ {0,1,2}, 1≤i≤n ...

  7. 牛客网多校训练第二场D Kth Minimum Clique

    链接:https://ac.nowcoder.com/acm/contest/882/D来源:牛客网 Given a vertex-weighted graph with N vertices, fi ...

  8. 牛客网多校训练第九场H Cutting Bamboos

    题目链接:https://ac.nowcoder.com/acm/contest/889/H 题意:给出n颗竹子的高度,q次询问,每次询问给出l,r,x,y,每次选取[l,r]中的竹子,砍y次砍掉所有 ...

  9. 牛客网多校第3场C-shuffle card 平衡树或stl(rope)

    链接:https://www.nowcoder.com/acm/contest/141/C 来源:牛客网 题目描述 Eddy likes to play cards game since there ...

随机推荐

  1. Golang教程:类型

    下面是 Go 支持的基本类型: bool Numeric Types  int8, int16, int32, int64, int uint8,uint16,uin32,uint64, uint f ...

  2. IT自由职业者的第一个月(下)——为什么放弃5年嵌入式驱动开发转到WEB开发?

        如果单从兴趣来看,其实我对Linux内核,Android中间件的兴趣要高于WEB,何况还有这么多年的经验积累,何必从头探索一个新的技术方向呢?     这里面原因是很多的,最核心的大概是以下4 ...

  3. BAT的关于程序员的那些事

    前言 你是否早有进入BAT公司的想法,但却因为对其不了解而在门外彷徨? 你是否想把技术团队打造成像BAT这些超级互联网公司,但却无从下手? 你是否已经进入了BAT,但是不知道如何晋升而苦恼? 那这篇文 ...

  4. C# 页面抽奖实例 asp.net

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat=&qu ...

  5. heroku快速部署node应用

    试了一下heroku,简直碉堡了,下面介绍如何简单几步实现弄得应用的部署访问: 1.首先https://dashboard.heroku.com/进行账号注册 2.github上push一个最新的no ...

  6. Node.js开发——MongoDB与Mongoose

    为了保存网站的用户数据和业务数据,通常需要一个数据库.MongoDB和Node.js特别般配,因为MongoDB是基于文档的非关系型数据库,文档是按BSON(JSON的轻量化二进制格式)存储的,增删改 ...

  7. 1-5 Sass的基本特性-运算

    [Sass运算]加法 程序中的运算是常见的一件事情,但在 CSS 中能做运算的,到目前为止仅有 calc() 函数可行.但在 Sass 中,运算只是其基本特性之一.在 Sass 中可以做各种数学计算, ...

  8. File中mkdir()和mkdirs()的区别

    mkdir() 创建此抽象路径名指定的目录.只能在已经存在的目录中创建文件夹 如: File folder = new File("d:\\test1\\test2"); fold ...

  9. C++ VS编译问题--VS下生成DLL,但没有生成Lib的解决办法

    如果项目生成了.dll文件,但是没有生成.lib文件,这是由于项目的设置错误,应作如下修改: 项目->属性->链接器->输入->模块定义文件,设置你的模块定义文件,默认为lib ...

  10. Oracle基础之分析表

    analyze table tablename compute statistics; analyze index indexname compute statistics; (analyze 不会重 ...