BZOJ 1053 [HAOI2007]反素数ant(约数个数)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=1053
【题目大意】
于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。
求不超过N的最大的反质数
【题解】
此题需要用到结论:
1.一个数约数个数=所有素因子的次数+1的乘积
2.小素数多一定比大素数多优。
所以预处理出小素数表,利用搜索解决这个问题
【代码】
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
int n,ans=1,num=1;
int p[15]={1,2,3,5,7,11,13,17,19,23,29,31};
void dfs(int k,LL nx,int cnt,int len){
if(k==12){if(nx>ans&&cnt>num||nx<=ans&&cnt>=num){ans=nx;num=cnt;}return;}
int t=1;
for(int i=0;i<=len;i++){
dfs(k+1,nx*t,cnt*(i+1),i);
t*=p[k];
if(nx*t>n)break;
}
}
int main(){
scanf("%d",&n);
dfs(1,1,1,20);
printf("%d\n",ans);
return 0;
}
BZOJ 1053 [HAOI2007]反素数ant(约数个数)的更多相关文章
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- bzoj 1053: [HAOI2007]反素数ant 搜索
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1497 Solved: 821[Submit][Sta ...
- BZOJ 1053 [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1948 Solved: 1094[Submit][St ...
- BZOJ 1053 [HAOI2007]反素数ant 神奇的约数
本蒟蒻终于开始接触数学了...之前写的都忘了...忽然想起来某神犇在几个月前就切了FWT了... 给出三个结论: 1.1-N中的反素数是1-N中约数最多但是最小的数 2.1-N中的所有数的质因子种类不 ...
- bzoj 1053 [HAOI2007]反素数ant——关于质数的dfs / 打表
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 写了个打表程序. #include<iostream> #include& ...
- 【BZOJ】1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...
- 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)
1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...
- BZOJ(8) 1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4118 Solved: 2453[Submit][St ...
- 1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3480 Solved: 2036[Submit][St ...
随机推荐
- 作为一名前端开发工程师,你必须掌握的WEB模板引擎:Handlebars
作为一名前端开发工程师,你必须掌握的WEB模板引擎:Handlebars 一.为什么需要使用模板引擎? 关于为什么要使用模板引擎,按照我常对学生说的一句话就是:不用重复造轮子.. 简单来说,模板最 ...
- 一键前端代理,一行命令开启nginx容器,代理前端页面
我们在前端开发的过程中,在对接口时候,往往需要跨域请求,那么及其简便的方法就是使用nginx反向代理,但是存在几点缺点 1.在新的一个项目下,我们需要找到安装nginx目录的nginx.conf文件并 ...
- python碎片记录(一)
1.python中求幂运算 2**31-1 2的31次方减一(32位整型数据范围为-2^31~2^31-1,最高位为符号位,负向值比正向值绝对值大1) 2.python中整数除法 x=x//1 ...
- k8s取节点内docker中的日志
Kubernetes(k8s)是Google开源的容器集群管理系统(谷歌内部:Borg).在Docker技术的基础上,为容器化的应用提供部署运行.资源调度.服务发现和动态伸缩等一系列完整功能,提高了大 ...
- 【转】CVE-2010-4258 漏洞分析
一. 漏洞简介 CVE-2010-4258这个漏洞很有意思,主要思路是如果通过clone函数去创建进程,并且带有CLONE_CHILD_CLEARTID标志,那么进程在退出的时候,可以造成内核任意地址 ...
- linux irq 自动探测
前言 编写驱动的时候,经常会用到中断,这时候我们在驱动初始化时就得申请中断,那么问题来了,中断号是多少呢?以前的中断号在板级相关的头文件里面已经静态定义好了,bsp的代码在内核启动过程也会根据那个帮我 ...
- python基础===装饰器@property 的扩展
以下来自Python 3.6.0 Document: class property(fget=None, fset=None, fdel=None, doc=None) Return a proper ...
- hit-testing机制介绍
1.简介 寻找处理触摸事件的view的过程为hit-testing,找到的能够处理触摸事件的view叫做hit-test view. 2.机制介绍 假设下图为我们的手机屏幕,当我们假设点击了view ...
- python manage.py 命令
在用命令django‐admin.py startproject <工程目录>建立一个django工程文件时,会生成一个manage.py文件,那么这个manage.py到底可以干嘛呢? ...
- Leetcode 之Add Binary(29)
比较简单,细节:先将字符串翻转,注意进位. string addBinary(string a, string b) { string result; int len = a.size() > ...