题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2021

Description

Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructing really big numbers known to humankind, for instance:

  • Exponentiation: 422016=42⋅42⋅...⋅422016 times422016=42⋅42⋅...⋅42⏟2016 times.
  • Factorials: 2016!=2016 ⋅ 2015 ⋅ ... ⋅ 2 ⋅ 1.

In this problem we look at their lesser-known love-child the exponial, which is an operation defined for all positive integers n​ as
exponial(n)=n(n − 1)(n − 2)21
For example, exponial(1)=1 and exponial(5)=54321 ≈ 6.206 ⋅ 10183230 which is already pretty big. Note that exponentiation is right-associative: abc = a(bc).

Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by m).

Input

There will be several test cases. For the each case, the input consists of two integers n (1 ≤ n ≤ 109) and m (1 ≤ m ≤ 109).

Output

Output a single integer, the value of exponial(n) mod m.

Sample Input

2 42
5 123456789
94 265

Sample Output


2
16317634
39

思路:本题是一道经典的指数循环定理简记e(n)=exponial(n)e(n)=exponial(n),利用欧拉定理进行降幂即可,不过要注意会爆int。指数循环公式为指数循环公式为A^B = A^(B %  φ(C) +  φ(C)) % C,其中 φ(C)为1~C-1中与C互质的数的个数。


代码如下:

 
 #include <cstdio>
#include <cstring> typedef long long ll;
int n, m; ll euler(int n) {
ll ans = n;
for(int i = ; i * i <= n; i++) {
if(n % i == ) {
ans = ans / i * (i - );
while(n % i == ) n /= i;
}
}
if(n > ) ans = ans / n * (n - );
return ans;
} ll ModPow(int x, int p, ll mod) {
ll rec = ;
while(p > ) {
if(p & ) rec = (ll)rec * x % mod;
x = (ll)x * x % mod;
p >>= ;
}
return rec;
} ll slove(int n, ll m) {
if(m == ) return ;
if(n == ) return % m;
if(n == ) return % m;
if(n == ) return % m;
if(n == ) return ( << ) % m;
return (ll)ModPow(n, euler(m), m) * ModPow(n, slove(n - , euler(m)), m) % m;
} int main() {
while(~scanf("%d%d", &n, &m)) {
printf("%lld\n",slove(n, m));
}
return ;
}

有不懂的请私聊我QQ(右侧公告里有QQ号)或在下方回复

Exponial (欧拉定理+指数循环定理+欧拉函数+快速幂)的更多相关文章

  1. XMU 1615 刘备闯三国之三顾茅庐(三) 【欧拉函数+快速幂+欧拉定理】

    1615: 刘备闯三国之三顾茅庐(三) Time Limit: 1000 MS  Memory Limit: 128 MBSubmit: 45  Solved: 8[Submit][Status][W ...

  2. hdu 3307 Description has only two Sentences (欧拉函数+快速幂)

    Description has only two SentencesTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...

  3. 数学知识-欧拉函数&快速幂

    欧拉函数 定义 对于正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目,记作φ(n). 算法思路 既然求解每个数的欧拉函数,都需要知道他的质因子,而不需要个数 因此,我们只需求出他的质因子, ...

  4. 牛客训练:小a与黄金街道(欧拉函数+快速幂)

    题目链接:传送门 思路:欧拉函数的性质:前n个数的欧拉函数之和为φ(n)*n/2,由此求出结果. 参考文章:传送门 #include<iostream> #include<cmath ...

  5. 小a与黄金街道(欧拉函数+快速幂)

    链接:https://ac.nowcoder.com/acm/contest/317/D 来源:牛客网 题目描述 小a和小b来到了一条布满了黄金的街道上.它们想要带几块黄金回去,然而这里的城管担心他们 ...

  6. 数论的欧拉定理证明 &amp; 欧拉函数公式(转载)

    欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) . 完全余数集合:定义小于 n 且和 n 互质的数 ...

  7. [LightOJ 1370] Bi-shoe and Phi-shoe(欧拉函数快速筛法)

    题目链接: https://vjudge.net/problem/LightOJ-1370 题目描述: 给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和. 知识点 ...

  8. 【BZOJ 1409】 Password 数论(扩展欧拉+矩阵快速幂+快速幂)

    读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用 ...

  9. CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)

    Nastya received a gift on New Year - a magic wardrobe. It is magic because in the end of each month ...

随机推荐

  1. lintcode-18-带重复元素的子集

    带重复元素的子集 给定一个可能具有重复数字的列表,返回其所有可能的子集 注意事项 子集中的每个元素都是非降序的 两个子集间的顺序是无关紧要的 解集中不能包含重复子集 样例 如果 S = [1,2,2] ...

  2. 全面了解 Nginx 到底能做什么

    来源:https://www.jianshu.com/p/8bf73d1a758c 前言 本文只针对Nginx在不加载第三方模块的情况能处理哪些事情,由于第三方模块太多所以也介绍不完,当然本文本身也可 ...

  3. 苹果IOS、安卓推送功能开发

    IOS推送开发:以下是基于开源javapns推送开发1.DerInputStream.getLength(): lengthTag=111, too big.先排除是否由于打包时证书 .p12 文件被 ...

  4. RT-thread内核之互斥量

    一.互斥量控制块:在include/rtdef.h中 #ifdef RT_USING_MUTEX /** * Mutual exclusion (mutex) structure */ struct ...

  5. Go语言【第十一篇】:Go数据结构之:结构体

    Go语言结构体 Go语言中数组可以存储同一类型的数据,但在结构体中我们可以为不同项定义不同的数据类型,结构体是由一系列具有相同类型或不同类型数据构成的集合.结构体表示一项记录,比如:保存图书馆的书籍记 ...

  6. Python程序性能分析模块----------cProfile

    cProfile分析器可以用来计算程序整个运行时间,还可以单独计算每个函数运行时间,并且告诉你这个函数被调用多少次 def foo(): pass import cProfile cProfile.r ...

  7. SocketServer-实现并发处理3

    用socketserver创建一个服务的步骤: 1  创建一个request handler class(请求处理类),合理选择StreamRequestHandler和DatagramRequest ...

  8. CentOS 转义字符

    常用转义字符 反斜杠(\):使反斜杠后面的一个变量变为单纯的字符串. 单引号(''):转义其中所有的变量为单纯的字符串. 双引号(""):保留其中的变量属性,不进行转义处理. 反引 ...

  9. 【刷题】BZOJ 2539 [Ctsc2000]丘比特的烦恼

    Description 随着社会的不断发展,人与人之间的感情越来越功利化.最近,爱神丘比特发现,爱情也已不再是完全纯洁的了.这使得丘比特很是苦恼,他越来越难找到合适的男女,并向他们射去丘比特之箭.于是 ...

  10. POJ3177:Redundant Paths——题解

    http://poj.org/problem?id=3177 明显要求桥的一道题. (因为有桥就说明只能从那一条路走,换句话说就是只有一种方法) 求完桥后按照结论(加几条边成双连通图的结论,不会请ba ...