Exponial (欧拉定理+指数循环定理+欧拉函数+快速幂)
题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2021
Description
Everybody loves big numbers (if you do not, you might want to stop reading at this point). There are many ways of constructing really big numbers known to humankind, for instance:
- Exponentiation: 422016=42⋅42⋅...⋅422016 times422016=42⋅42⋅...⋅42⏟2016 times.
- Factorials: 2016!=2016 ⋅ 2015 ⋅ ... ⋅ 2 ⋅ 1.

In this problem we look at their lesser-known love-child the exponial, which is an operation defined for all positive integers n as
exponial(n)=n(n − 1)(n − 2)⋯21
For example, exponial(1)=1 and exponial(5)=54321 ≈ 6.206 ⋅ 10183230 which is already pretty big. Note that exponentiation is right-associative: abc = a(bc).
Since the exponials are really big, they can be a bit unwieldy to work with. Therefore we would like you to write a program which computes exponial(n) mod m (the remainder of exponial(n) when dividing by m).
Input
There will be several test cases. For the each case, the input consists of two integers n (1 ≤ n ≤ 109) and m (1 ≤ m ≤ 109).
Output
Output a single integer, the value of exponial(n) mod m.
Sample Input
2 42
5 123456789
94 265
Sample Output
思路:本题是一道经典的指数循环定理简记e(n)=exponial(n)e(n)=exponial(n),利用欧拉定理进行降幂即可,不过要注意会爆int。指数循环公式为指数循环公式为A^B = A^(B % φ(C) + φ(C)) % C,其中 φ(C)为1~C-1中与C互质的数的个数。

代码如下:
#include <cstdio>
#include <cstring> typedef long long ll;
int n, m; ll euler(int n) {
ll ans = n;
for(int i = ; i * i <= n; i++) {
if(n % i == ) {
ans = ans / i * (i - );
while(n % i == ) n /= i;
}
}
if(n > ) ans = ans / n * (n - );
return ans;
} ll ModPow(int x, int p, ll mod) {
ll rec = ;
while(p > ) {
if(p & ) rec = (ll)rec * x % mod;
x = (ll)x * x % mod;
p >>= ;
}
return rec;
} ll slove(int n, ll m) {
if(m == ) return ;
if(n == ) return % m;
if(n == ) return % m;
if(n == ) return % m;
if(n == ) return ( << ) % m;
return (ll)ModPow(n, euler(m), m) * ModPow(n, slove(n - , euler(m)), m) % m;
} int main() {
while(~scanf("%d%d", &n, &m)) {
printf("%lld\n",slove(n, m));
}
return ;
}
有不懂的请私聊我QQ(右侧公告里有QQ号)或在下方回复
Exponial (欧拉定理+指数循环定理+欧拉函数+快速幂)的更多相关文章
- XMU 1615 刘备闯三国之三顾茅庐(三) 【欧拉函数+快速幂+欧拉定理】
1615: 刘备闯三国之三顾茅庐(三) Time Limit: 1000 MS Memory Limit: 128 MBSubmit: 45 Solved: 8[Submit][Status][W ...
- hdu 3307 Description has only two Sentences (欧拉函数+快速幂)
Description has only two SentencesTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K ...
- 数学知识-欧拉函数&快速幂
欧拉函数 定义 对于正整数n,欧拉函数是小于或等于n的正整数中与n互质的数的数目,记作φ(n). 算法思路 既然求解每个数的欧拉函数,都需要知道他的质因子,而不需要个数 因此,我们只需求出他的质因子, ...
- 牛客训练:小a与黄金街道(欧拉函数+快速幂)
题目链接:传送门 思路:欧拉函数的性质:前n个数的欧拉函数之和为φ(n)*n/2,由此求出结果. 参考文章:传送门 #include<iostream> #include<cmath ...
- 小a与黄金街道(欧拉函数+快速幂)
链接:https://ac.nowcoder.com/acm/contest/317/D 来源:牛客网 题目描述 小a和小b来到了一条布满了黄金的街道上.它们想要带几块黄金回去,然而这里的城管担心他们 ...
- 数论的欧拉定理证明 & 欧拉函数公式(转载)
欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) . 完全余数集合:定义小于 n 且和 n 互质的数 ...
- [LightOJ 1370] Bi-shoe and Phi-shoe(欧拉函数快速筛法)
题目链接: https://vjudge.net/problem/LightOJ-1370 题目描述: 给出一些数字,对于每个数字找到一个欧拉函数值大于等于这个数的数,求找到的所有数的最小和. 知识点 ...
- 【BZOJ 1409】 Password 数论(扩展欧拉+矩阵快速幂+快速幂)
读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用 ...
- CF思维联系– CodeForces -CodeForces - 992C Nastya and a Wardrobe(欧拉降幂+快速幂)
Nastya received a gift on New Year - a magic wardrobe. It is magic because in the end of each month ...
随机推荐
- TCP系列24—重传—14、F-RTO虚假重传探测
一.虚假重传 在一些情况下,TCP可能会在没有数据丢失的情况下初始化一个重传,这种重传就叫做虚假重传(Spurious retransmission).发生虚假重传的原因可能是包传输中重排序.传输中发 ...
- OSG数学基础:坐标系变换
三维实体对象需要经过一系列的坐标变换才能正确.真实地显示在屏幕上.在一个场景中,当读者对场景中的物体进行各种变换及相关操作时,坐标系变换是非常频繁的. 坐标系变换通常包括:世界坐标系-物体坐标系变换. ...
- C# 创建Excel或需不安装Office
第一种.Aspose.Cells.dll //如果需要饶过office Excel那么就看我最后的实现方法吧~! //我最后的实现是使用的第三方Aspose.Cells.dll //具了解这个dll一 ...
- 【APS.NET Core】- Razor Page 使用jqgrid实现分页功能
本文将使用jqgrid在Razor Page中实现分页功能. 前台 List.cshtml代码如下: @page @model ListModel @{ Layout = "~/Pages/ ...
- linux后台运行之screen和nohup
3.1 nohup命令 如果你正在运行一个进程,而且你觉得在退出帐户时该进程还不会结束,那么可以使用nohup命令. 该命令可以在你退出帐户/关闭终端之后继续运行相应的进程. nohup就是不挂起的意 ...
- dev_queue_xmit 发生了什么?skb还会在哪里缓存
见 codebox/net/qdisk/xmit.log中保存了一份记录 调用关系 sch_direct_xmit --> dev_hard_start_xmit --> xmit_one ...
- ViewData与ViewBag
ViewData与ViewBag使用的是同一个数据源,因此数据一样,只是ViewBag 不再是字典的键值对结构,而是 dynamic 动态类型(http://www.cnblogs.com/kissd ...
- UIKit中的几个核心对象的介绍:UIApplication,UIWindow,UIViewController,UIView(layer)简单介绍
UIApplication,UIWindow,UIViewController,UIView(layer)简单介绍 一:UIApplication:单例(关于单例后面的文章中会详细介绍,你现在只要知道 ...
- Go语言【第一篇】:Go初识
Go语言特色 简洁.快速.安全 并行.有趣.开源 内存管理.数据安全.编译迅速 Go语言用途 Go语言被设计成一门应用于搭载Web服务器,存储集群或类似用途的巨型中央服务器的系统编程语言.对于高性能分 ...
- BZOJ4709 JSOI2011柠檬(动态规划)
首先要冷静下来发现这仅仅是在划分区间.显然若有相邻的数字相同应当划分在同一区间.还有一个显然的性质是区间的两端点应该相同且选择的就是端点的数.瞬间暴力dp就变成常数极小100002了.可以继续斜率优化 ...