51nod 1486 大大走格子——dp
有一个h行w列的棋盘,里面有一些格子是不能走的,现在要求从左上角走到右下角的方案数。
单组测试数据。
第一行有三个整数h, w, n(1 ≤ h, w ≤ 10^5, 1 ≤ n ≤ 2000),表示棋盘的行和列,还有不能走的格子的数目。
接下来n行描述格子,第i行有两个整数ri, ci (1 ≤ ri ≤ h, 1 ≤ ci ≤ w),表示格子所在的行和列。
输入保证起点和终点不会有不能走的格子。
输出答案对1000000007取余的结果。
3 4 2
2 2
2 3
2
————————————————————————————
这道题如果单纯的在图上dp肯定会T嘛 因为n m 都是1e5的级别
那么我们可以考虑每一个不能走的格子 f[i]表示走到这个点不经过别的点的方案数
f[i]=c(x[i]+y[i]-2,x[i]-1)-sigma f[j]*c(x[i]-x[]j+y[i]-y[j],x[i]-x[j])
至于为什么要这么算呢 我们可以用总的路径减去不合法的路径 而每一条不合法的路径
就是先到一个点然后后面乱走嘛 这样就可以保证不算重了2333
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
const int M=1e6+,mod=1e9+,N=1e5+;
int read(){
int ans=,f=,c=getchar();
while(c<''||c>''){if(c=='-') f=-; c=getchar();}
while(c>=''&&c<=''){ans=ans*+(c-''); c=getchar();}
return ans*f;
}
int n,m,p;
struct pos{int x,y;}q[M];
bool cmp(pos a,pos b){return a.x!=b.x?a.x<b.x:a.y<b.y;}
LL w[*N],inv[*N];
LL pmod(LL a,LL b){
LL ans=;
while(b){
if(b&) ans=ans*a%mod;
b>>=; a=a*a%mod;
}
return ans;
}
void prepare(){
int mx=n+m;
w[]=; for(int i=;i<=mx;i++) w[i]=w[i-]*i%mod;
inv[mx]=pmod(w[mx],mod-);
for(int i=mx;i;i--) inv[i-]=inv[i]*i%mod;
}
LL C(int n,int m){return w[n]*inv[m]%mod*inv[n-m]%mod;}
LL f[M],ans;
int main(){
//freopen("gg.cpp","r",stdin);
n=read(); m=read();
p=read(); prepare();
for(int i=;i<=p;i++) q[i].x=read(),q[i].y=read();
std::sort(q+,q++p,cmp);
for(int i=;i<=p;i++){
f[i]=C(q[i].x+q[i].y-,q[i].x-);
for(int j=;j<i;j++)
f[i]=(f[i]-f[j]*C(q[i].x-q[j].x+q[i].y-q[j].y,q[i].x-q[j].x)%mod+mod)%mod;
}
ans=C(n+m-,n-);
for(int i=;i<=p;i++) ans=(ans-f[i]*C(n-q[i].x+m-q[i].y,n-q[i].x)%mod+mod)%mod;
printf("%lld\n",(ans+mod)%mod);
return ;
}
51nod 1486 大大走格子——dp的更多相关文章
- 51nod 1486 大大走格子(容斥原理)
1486 大大走格子 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 有一个h行w列的棋盘,里面有一些格子是不能走的,现在要 ...
- 51Nod 1486 大大走格子 —— 组合数学
题目链接:https://vjudge.net/problem/51Nod-1486 1486 大大走格子 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: ...
- 51nod 1486 大大走格子(DP+组合数学)
枚举不合法点的思想. 把障碍x坐标为第一关键字,y坐标为第二关键字排序.f[i]表示走到第i个障碍的方案数. f[i]=C(x[i]+y[i]-2,x[i]-1)-sigma(f[j]*C(x[i]- ...
- 51nod 1486 大大走格子(容斥+dp+组合数)
传送门 解题思路 暴力容斥复杂度太高,无法接受,考虑用\(dp\).设\(f(i)\)表示从左上角开始不经过前面的阻断点,只经过\(i\)的阻断点.那么可以考虑容斥,用经过\(i\)的总方案数减去前面 ...
- 51Nod 1486 大大走格子 —— 容斥
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1486 对于每个点,求出从起点到它,不经过其他障碍点的方案数: 求一 ...
- 51nod 1486 大大走格子——容斥
题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1486 已知起点到某个障碍点左上角的所有点的不经过障碍的方案数,枚举 ...
- 51 Nod 1486 大大走格子
1486 大大走格子 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 关注 有一个h行w列的棋盘,里面有一些格子是不 ...
- 【51NOD】1486 大大走格子
[算法]动态规划+组合数学 [题意]有一个h行w列的棋盘,定义一些格子为不能走的黑点,现在要求从左上角走到右下角的方案数. [题解] 大概能考虑到离散化黑点后,中间的空格子直接用组合数计算. 然后解决 ...
- [51Nod1486] 大大走格子 (dp+容斥)
传送门 Description 有一个h行w列的棋盘,里面有一些格子是不能走的,现在要求从左上角走到右下角的方案数. Input 单组测试数据. 第一行有三个整数h, w, n(1 ≤ h, w ≤ ...
随机推荐
- PHPCMS登录后不是进入会员中心而是转入登录前页最新代码
phpcms比如会员在登录前是停留在下载页面的,但是下载页面是要求会员登录后才能下载,所以会员就有这个登陆过程,但是一般的会员系统是登录进会员中心的,就会有点体验不好 这里教大家修改下 能达到登录后 ...
- HASH表的实现(拉链法)
本文的一些基本概念参考了一部分百度百科,当然只保留了最有价值的部分,代码部分完全是自己实现! 简介 哈希表(Hash table,也叫散列表),是根据关键码值(Key value)而直接进行访问的数据 ...
- 网页添加提示音,用setInterval
如果一条数据通过审核了,修改数据库中一个值,用户怎么异步动态知道自己的记录通过审核了呢,我是通过音乐和提示的方式. 网页中添加如下代码: <style> #notify { positio ...
- 使用bat执行java项目
前提:java项目要有main方法 类似写法如下: set JAVA_HOME=C:\jdk1.6 set LIB_HOME=. set JAVA_JAR=. set JAVA_JAR=%JAVA_J ...
- RT-thread-2.0.1移植(基于STM32F4xx)
1.将下载的rt-thread-2.0.1解压后,得到如下图所示的文件列表. 在bsp目录下可以找到stm32f40x文件夹,这文件夹里面包括了库函数,其他芯片平台的文件夹统统删掉.在libcpu下, ...
- iOS-UI控件概述
IBAction和IBOutlet,UIView 1 @interface ViewController : UIViewController 2 3 @property(nonatomic, wea ...
- BZOJ4820 SDOI2017硬币游戏(概率期望+高斯消元+kmp)
容易想到的做法是建出AC自动机,高斯消元.然而自动机上节点数量是nm的. 注意到我们要求的变量只有n个,考虑将其他不用求的节点合并为一个变量.这个变量即表示随机生成一个串,其不包含任何一个模板串的概率 ...
- [BZOJ4589]Hard Nim
description BZOJ 题意:\(n\)堆式子,每堆石子数量为\(\le m\)的质数,对于每一个局面玩\(Nim\)游戏,求后手必胜的方案数. data range \[n\le 10^9 ...
- BZOJ4889 & 洛谷3759:[TJOI2017]不勤劳的图书管理员——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4889 https://www.luogu.org/problemnew/show/P3759 加里 ...
- SpringBoot-配置文件属性注入-3种方式
配置文件: datasource.username = admin datasource.url = /hello/world 方式一: @Value 前提: <!-- JavaBean处理工具 ...