博客地址:https://www.cnblogs.com/zylyehuo/

参考链接

1、(https://blog.csdn.net/qq_43406338/article/details/109600827?ops_request_misc={"request_id"%3A"168087043216800182749128"%2C"scm"%3A"20140713.130102334.pc_all."}&request_id=168087043216800182749128&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_ecpm_v1~rank_v31_ecpm-1-109600827-null-null.142v82insert_down1,201v4add_ask,239v2insert_chatgpt&utm_term=Resource not found%3A gazebo_ros ROS path [0]%3D%2Fopt%2Fros%2Fmelodic%2Fshare%2Fros ROS path [1]%3D%2Fhome%2Fyehuo%2Fmycar_ws%2Fsrc ROS path [2]%3D%2Fopt%2Fros%2Fmelodic%2Fshare The traceback for the exception was written to the log &spm=1018.2226.3001.4187)

2、(https://blog.csdn.net/samsu0108/article/details/121686776?ops_request_misc=&request_id=&biz_id=102&utm_term=[Err] [REST.cc:205] Error in R&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-121686776.142v82insert_down1,201v4add_ask,239v2insert_chatgpt&spm=1018.2226.3001.4187)

3、(https://blog.csdn.net/qq_39400324/article/details/125051463?ops_request_misc=&request_id=&biz_id=102&utm_term=Error [Converter.cc:151] Unabl&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduweb~default-0-125051463.142v82insert_down1,201v4add_ask,239v2insert_chatgpt&spm=1018.2226.3001.4187)

4、(http://www.autolabor.com.cn/book/ROSTutorials/di-6-zhang-ji-qi-ren-xi-tong-fang-zhen/66-urdfji-cheng-gazebo.html)

5、(https://www.bilibili.com/video/BV1Ci4y1L7ZZ?p=271&vd_source=4acdb875c05ce9dccfce3cd6cfaac651)

成果图

STEP1:创建工作空间

mkdir -p mycar_ws/src
cd mycar_ws
catkin_make

STEP2:在vscode中准备需要的文件夹

右键src,点击Create Catkin Package

先输入包名:mycar

再输入依赖工具:urdf xacro gazebo_ros gazebo_ros_control gazebo_plugins

STEP3:在vscode中准备需要的文件夹

在mycar目录下依次创建 launch、urdf、worlds文件夹

在 mycar/urdf 文件夹下再创建 xacro文件夹

结构如下图所示

STEP4:mycar/launch

创建 environment.launch 文件

mycar/launch/environment.launch

<launch>

    <param name="robot_description" command="$(find xacro)/xacro $(find mycar)/urdf/xacro/car.urdf.xacro" />

    <include file="$(find gazebo_ros)/launch/empty_world.launch">
<arg name="world_name" value="$(find mycar)/worlds/box_house.world" />
</include> <node pkg="gazebo_ros" type="spawn_model" name="model" args="-urdf -model mycar -param robot_description" />
</launch>

STEP5:下载worlds文件夹下需要的文件

终端输入命令

git clone https://github.com/zx595306686/sim_demo.git

得到以下文件

将第三个文件 box_house.world 复制到mycar_ws中创建的worlds文件夹下

STEP6:mycar/urdf/xacro

创建以下文件

mycar/urdf/xacro/car_base.urdf.xacro

<robot name="mycar" xmlns:xacro="http://www.ros.org/wiki/xacro">

    <xacro:property name="PI" value="3.141"/>

    <material name="black">
<color rgba="0.0 0.0 0.0 1.0" />
</material> <xacro:property name="footprint_radius" value="0.001" />
<xacro:property name="base_radius" value="0.1" />
<xacro:property name="base_length" value="0.08" />
<xacro:property name="earth_space" value="0.015" />
<xacro:property name="base_joint_z" value="${base_length / 2 + earth_space}" /> <xacro:property name="base_mass" value="2" /> <!-- base -->
<link name="base_footprint">
<visual>
<geometry>
<sphere radius="${footprint_radius}" />
</geometry>
</visual>
</link> <link name="base_link">
<visual>
<geometry>
<cylinder radius="${base_radius}" length="${base_length}" />
</geometry>
<origin xyz="0 0 0" rpy="0 0 0" />
<material name="baselink_color">
<color rgba="1.0 0.5 0.2 0.7" />
</material>
</visual> <collision>
<geometry>
<cylinder radius="${base_radius}" length="${base_length}" />
</geometry>
<origin xyz="0 0 0" rpy="0 0 0" />
</collision>
<xacro:cylinder_inertial_matrix m="${base_mass}" r="${base_radius}" h="${base_length}" /> </link> <gazebo reference="base_link">
<material>Gazebo/Yellow</material>
</gazebo> <joint name="link2footprint" type="fixed">
<parent link="base_footprint" />
<child link="base_link" />
<origin xyz="0 0 ${earth_space + base_length / 2 }" rpy="0 0 0"/>
</joint> <!-- qudong wheel -->
<xacro:property name="wheel_radius" value="0.0325" />
<xacro:property name="wheel_length" value="0.015" />
<xacro:property name="wheel_mass" value="0.05" /> <xacro:macro name="add_wheels" params="name flag">
<link name="${name}_wheel">
<visual>
<geometry>
<cylinder radius="${wheel_radius}" length="${wheel_length}" />
</geometry>
<origin xyz="0.0 0.0 0.0" rpy="${PI / 2} 0.0 0.0" />
<material name="black" />
</visual> <collision>
<geometry>
<cylinder radius="${wheel_radius}" length="${wheel_length}" />
</geometry>
<origin xyz="0.0 0.0 0.0" rpy="${PI / 2} 0.0 0.0" />
</collision>
<xacro:cylinder_inertial_matrix m="${wheel_mass}" r="${wheel_radius}" h="${wheel_length}" /> </link> <gazebo reference="${name}_wheel">
<material>Gazebo/Red</material>
</gazebo> <joint name="${name}_wheel2base_link" type="continuous">
<parent link="base_link" />
<child link="${name}_wheel" />
<origin xyz="0 ${flag * base_radius} ${-(earth_space + base_length / 2 - wheel_radius) }" />
<axis xyz="0 1 0" />
</joint>
</xacro:macro>
<xacro:add_wheels name="left" flag="1" />
<xacro:add_wheels name="right" flag="-1" /> <!-- zhicheng/wanxiang wheel -->
<xacro:property name="support_wheel_radius" value="0.0075" />
<xacro:property name="support_wheel_mass" value="0.01" /> <xacro:macro name="add_support_wheel" params="name flag" >
<link name="${name}_wheel">
<visual>
<geometry>
<sphere radius="${support_wheel_radius}" />
</geometry>
<origin xyz="0 0 0" rpy="0 0 0" />
<material name="black" />
</visual> <collision>
<geometry>
<sphere radius="${support_wheel_radius}" />
</geometry>
<origin xyz="0 0 0" rpy="0 0 0" />
</collision>
<xacro:sphere_inertial_matrix m="${support_wheel_mass}" r="${support_wheel_radius}" /> </link> <gazebo reference="${name}_wheel">
<material>Gazebo/Red</material>
</gazebo> <joint name="${name}_wheel2base_link" type="continuous">
<parent link="base_link" />
<child link="${name}_wheel" />
<origin xyz="${flag * (base_radius - support_wheel_radius)} 0 ${-(base_length / 2 + earth_space / 2)}" />
<axis xyz="1 1 1" />
</joint>
</xacro:macro> <xacro:add_support_wheel name="front" flag="1" />
<xacro:add_support_wheel name="back" flag="-1" /> </robot>

mycar/urdf/xacro/car_camera.urdf.xacro

<robot name="my_camera" xmlns:xacro="http://wiki.ros.org/xacro">

    <xacro:property name="camera_length" value="0.01" />
<xacro:property name="camera_width" value="0.025" />
<xacro:property name="camera_height" value="0.025" />
<xacro:property name="camera_x" value="0.08" />
<xacro:property name="camera_y" value="0.0" />
<xacro:property name="camera_z" value="${base_length / 2 + camera_height / 2}" />
<xacro:property name="camera_mass" value="0.01" /> <link name="camera">
<visual>
<geometry>
<box size="${camera_length} ${camera_width} ${camera_height}" />
</geometry>
<origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
<material name="black" />
</visual> <collision>
<geometry>
<box size="${camera_length} ${camera_width} ${camera_height}" />
</geometry>
<origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
</collision>
<xacro:Box_inertial_matrix m="${camera_mass}" l="${camera_length}" w="${camera_width}" h="${camera_height}" /> </link> <gazebo reference="camera">
<material>Gazebo/Blue</material>
</gazebo> <joint name="camera2base_link" type="fixed">
<parent link="base_link" />
<child link="camera" />
<origin xyz="${camera_x} ${camera_y} ${camera_z}" />
</joint> </robot>

mycar/urdf/xacro/car_laser.urdf.xacro

<robot name="my_laser" xmlns:xacro="http://wiki.ros.org/xacro">

    <xacro:property name="support_length" value="0.15" />
<xacro:property name="support_radius" value="0.01" />
<xacro:property name="support_x" value="0.0" />
<xacro:property name="support_y" value="0.0" />
<xacro:property name="support_z" value="${base_length / 2 + support_length / 2}" />
<xacro:property name="support_mass" value="0.02" /> <link name="support">
<visual>
<geometry>
<cylinder radius="${support_radius}" length="${support_length}" />
</geometry>
<origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
<material name="red">
<color rgba="0.8 0.2 0.0 0.8" />
</material>
</visual> <collision>
<geometry>
<cylinder radius="${support_radius}" length="${support_length}" />
</geometry>
<origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
</collision> <xacro:cylinder_inertial_matrix m="${support_mass}" r="${support_radius}" h="${support_length}" /> </link> <gazebo reference="support">
<material>Gazebo/Grey</material>
</gazebo> <joint name="support2base_link" type="fixed">
<parent link="base_link" />
<child link="support" />
<origin xyz="${support_x} ${support_y} ${support_z}" />
</joint> <xacro:property name="laser_length" value="0.05" />
<xacro:property name="laser_radius" value="0.03" />
<xacro:property name="laser_x" value="0.0" />
<xacro:property name="laser_y" value="0.0" />
<xacro:property name="laser_z" value="${support_length / 2 + laser_length / 2}" />
<xacro:property name="laser_mass" value="0.1" /> <link name="laser">
<visual>
<geometry>
<cylinder radius="${laser_radius}" length="${laser_length}" />
</geometry>
<origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
<material name="black" />
</visual> <collision>
<geometry>
<cylinder radius="${laser_radius}" length="${laser_length}" />
</geometry>
<origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
</collision>
<xacro:cylinder_inertial_matrix m="${laser_mass}" r="${laser_radius}" h="${laser_length}" /> </link> <gazebo reference="laser">
<material>Gazebo/Black</material>
</gazebo> <joint name="laser2support" type="fixed">
<parent link="support" />
<child link="laser" />
<origin xyz="${laser_x} ${laser_y} ${laser_z}" />
</joint> </robot>

mycar/urdf/xacro/car.urdf.xacro

<robot name="car" xmlns:xacro="http://wiki.ros.org/xacro">
<xacro:include filename="inertial_matrix.xacro" />
<xacro:include filename="car_base.urdf.xacro" />
<xacro:include filename="car_camera.urdf.xacro" />
<xacro:include filename="car_laser.urdf.xacro" />
</robot>

mycar/urdf/xacro/inertial_matrix.xacro

<robot name="base" xmlns:xacro="http://wiki.ros.org/xacro">
<!-- Macro for inertia matrix -->
<xacro:macro name="sphere_inertial_matrix" params="m r">
<inertial>
<mass value="${m}" />
<inertia ixx="${2*m*r*r/5}" ixy="0" ixz="0"
iyy="${2*m*r*r/5}" iyz="0"
izz="${2*m*r*r/5}" />
</inertial>
</xacro:macro> <xacro:macro name="cylinder_inertial_matrix" params="m r h">
<inertial>
<mass value="${m}" />
<inertia ixx="${m*(3*r*r+h*h)/12}" ixy = "0" ixz = "0"
iyy="${m*(3*r*r+h*h)/12}" iyz = "0"
izz="${m*r*r/2}" />
</inertial>
</xacro:macro> <xacro:macro name="Box_inertial_matrix" params="m l w h">
<inertial>
<mass value="${m}" />
<inertia ixx="${m*(h*h + l*l)/12}" ixy = "0" ixz = "0"
iyy="${m*(w*w + l*l)/12}" iyz= "0"
izz="${m*(w*w + h*h)/12}" />
</inertial>
</xacro:macro>
</robot>

STEP7:运行

启动 roscore

建议在vscode外终端启动(也可在vscode中启动)

设置环境变量,启动gazebo

在vscode中新建终端

注意要进入 mycar_ws 路径下

依次执行以下命令

出现如下画面即代表创建成功

第一次创建时可检查一下左栏选项是否一致

常见问题汇总

1、ResourceNotFound: gazebo_ros

ResourceNotFound: gazebo_ros
ROS path [0]=/opt/ros/kinetic/share/ros
ROS path [1]=/home/park/catkin_ws/src
ROS path [2]=/opt/ros/kinetic/share
问题:找不到资源
解决办法:直接安装缺失的gazebo:
$ sudo apt-get install ros-kinetic-gazebo-ros-pkgs ros-kinetic-gazebo-ros-control

2、[Err] [REST.cc:205] Error in REST request Gazebo 启动报错

1、在终端输入命令
sudo vim ~/.ignition/fuel/config.yaml
2、将https://api.ignitionfuel.org替换为https://fuel.ignitionrobotics.org

3、Unable to convert from SDF version 1.7 to 1.6

将 environment.world文件 中第一行的<sdf version = '1.7'>该为<sdf version = '1.6'>即可。

gazebo小车模型(附带仿真环境)的更多相关文章

  1. 【探索之路】机器人篇(5)-Gazebo物理仿真环境搭建_让机器人运动起来

    如果完成了前两步,那么其实我们已经可以去连接我们的现实中的机器人了. 但是,做机器人所需要的材料还没有到,所以我们这里先在电脑平台上仿真一下.这里我们用到的就算gazebo物理仿真环境,他能很好的和R ...

  2. ROS学习笔记十二:使用gazebo在ROS中仿真

    想要在ROS系统中对我们的机器人进行仿真,需要使用gazebo. gazebo是一种适用于复杂室内多机器人和室外环境的仿真环境.它能够在三维环境中对多个机器人.传感器及物体进行仿真,产生实际传感器反馈 ...

  3. 基于 Mathematica 的机器人仿真环境(机械臂篇)[转]

    完美的教程,没有之一,收藏学习. 目的 本文手把手教你在 Mathematica 软件中搭建机器人的仿真环境,具体包括以下内容(所使用的版本是 Mathematica 11.1,更早的版本可能缺少某些 ...

  4. 【黑金原创教程】【Modelsim】【第四章】激励文本就是仿真环境

      声明:本文为黑金动力社区(http://www.heijin.org)原创教程,如需转载请注明出处,谢谢! 黑金动力社区2013年原创教程连载计划: http://www.cnblogs.com/ ...

  5. 项目开发过程中什么是开发环境、测试环境、生产环境、UAT环境、仿真环境?

    项目开发过程中什么是开发环境.测试环境.生产环境.UAT环境.仿真环境? 最近在公司项目开发过程中总用到测试环境,生产环境和UAT环境等,然而我对环境什么的并不是很理解它的意思,一直处于开发阶段,出于 ...

  6. 搭建Modelsim SE仿真环境-使用do文件仿真

    本章我们介绍仿真环境搭建是基于Modelsim SE的.Modelsim有很多版本,比如说Modelsim-Altera,但是笔者还是建议大家使用Modelsim-SE,Modelsim-Altera ...

  7. 什么是 开发环境、测试环境、生产环境、UAT环境、仿真环境

    开发环境:开发环境是程序猿们专门用于开发的服务器,配置可以比较随意, 为了开发调试方便,一般打开全部错误报告. 测试环境:一般是克隆一份生产环境的配置,一个程序在测试环境工作不正常,那么肯定不能把它发 ...

  8. [pixhawk笔记]8-半物理仿真环境

    通过半物理仿真,可以在不试飞的情况下对飞控的软硬件进行部分验证,下面结合文档对半物理仿真环境的搭建和运行进行学习.先跑起来再说. Pixhawk支持多轴和固定翼的仿真,多轴用jMavSim,固定翼用X ...

  9. 开发环境、测试环境、生产环境、UAT环境、仿真环境详解

    版权声明:本文为博主原创文章,遵循CC 4.0 by-sa版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/WYX15011474269/article ...

  10. 01-SV入门及仿真环境搭建

    1.SV入门 参考书籍<SystemVerilog验证 测试平台编写指南> [美]克里斯·斯皮尔 著 2.仿真环境搭建 仿真工具:modelsim se 2019.2,它不仅支持Veril ...

随机推荐

  1. C#中使用泛型对象(List<T>)对xml文件中的重复节点进行的序列化和反序列化

    本文描述将对象(List<T>)序列化到 XML 文档中和从 XML 文档中反序列化为对象(List<T>). 命名空间: System.Xml.Serialization 程 ...

  2. Python依赖库的导入、导出 | 解决内网安装模块问题 | Python

    通过在有网的机器A下下载所有的依赖包至package文件夹下: pip3 download -r requirements.txt -d ./package 将依赖包移动至没有网的机器B下,指定依赖包 ...

  3. vue基础4

    Q:1.动画的使用方法以及动画库的使用方式 2.vue中的指令有哪些? 3.vue中生命周期钩子函数有哪些?分别代表什么含义? 4.filter的语法是什么? 5.computed的特点是什么? 6. ...

  4. Appium_iOS_Safari测试脚本(2)

    经过多次调试,在Safari上的测试脚本终于可以运行了,不过部分元素还是无法识别,还需要继续调试: #!/usr/bin/env/python # -*-coding:utf-8-*- import ...

  5. 手把手带你使用Karpenter减少K8s集群资源浪费

    Kubernetes 集群的主要成本因素之一是数据平面上的计算层.将 Kubernetes 集群运行在 Amazon EC2 Spot 实例上是一种显著降低计算成本的有效方式.使用 Spot 实例可以 ...

  6. Solution Set - “带我去看极光与大海吧”

    目录 0.「AGC 062C」Mex of Subset Sum 1.「THUPC 2021 初赛」「洛谷 P7136」方格游戏 2.「THUPC 2023 初赛」「洛谷 P9139」喵了个喵 II ...

  7. ffmpeg 去除音频中的静音

    去除音频中的静音 //去除所有超过0.3秒的静音部分 ffmpeg -i input.mp3 -af silenceremove=stop_periods=-1:stop_duration=0.3:s ...

  8. 创建react脚手架(项目)

    现在安装 react 脚手架的有三种, react-boilerplate react-redux-starter-kit create-react-app(国内主要运用这一种) 1==>npm ...

  9. Linux/Centos文件授权用户文件夹权限介绍

    一.Linux文件权限介绍 在Linux中,一切皆为文件(目录也是文件),每个文件对用户具有可读(read).可写(write).可执行(excute)权限.目录的执行操作表示是否有权限进入该目录并操 ...

  10. 第4章 C#的高级特性

    第4章 C#的高级特性 4.1 委托 4.1.2 多播委托 对值为 null 的委托变量进行 + ​或 += ​操作,等价于为变量指定一个新值: SomeDelegate d = null; d += ...