【力扣】剑指 Offer II 092. 翻转字符
题目


解题思路
一个很暴力的想法,在满足单调递增的前提下,使每一位分别取 1 或 0,去看看哪个结果小。
递归函数定义int dp(StringBuilder sb, int ind, int pre) sb是字符串,ind 是字符串当前位,pre 是字符串前一位(0或1)
dp函数表示:从字符串当前位ind开始到字符串结尾,这样一个子字符串,变为单调递增所需要翻转的最小次数。
因此题目所求就是 dp(sb, 0, 0)。第0位的前一位为0。
具体递归入口有四种情况,根据前一位是0或1 和 当前位是0或1来讨论,即
当前位为0:
前一位为0:
前一位为1:
当前位为1:
前一位为0:
前一位为1:
一开始递归函数定义不明确,导致无法形成重叠子问题,也就无法用备忘录来优化。
在考虑备忘录优化的时候,需要明确备忘录的每一维分别代表什么。参考了这位大佬的题解Java 递归+二维DP+空间优化。
代码
class Solution {
int[][] memo; // 备忘录
public int minFlipsMonoIncr(String s) {
int n = s.length();
memo = new int[n + 1][2];
for(int[] arr : memo){
Arrays.fill(arr, -1);
}
return dp(s.toCharArray(), 0, 0);
}
int dp(char[] s, int ind, int pre){ // sb是字符串,ind 是字符串当前位,pre 是前一位
if(ind == s.length){ // 到字符串结尾了,需要改变的字符为0,返回值为0
return 0;
}
if(memo[ind][pre] != -1){
return memo[ind][pre];
}
int res = 0;
if(s[ind] == '0'){ // 当前位为0
if(pre == 0){ // 前一位为 0
int a = dp(s, ind + 1, s[ind] - '0'); // 保持0不变
s[ind] = '1';
int b = dp(s, ind + 1, s[ind] - '0'); // 把当前0变为1,翻转次数加一
s[ind] = '0';
res += Math.min(a, b); // 取两者中最小的情况
}else if(pre == 1){ // 前一位为 1
s[ind] = '1';
res += dp(s, ind + 1, s[ind] - '0') + 1; // 前一位为1,当前位为0,必须变成1
s[ind] = '0';
}
}else if(s[ind] == '1'){ // 当前位为1
if(pre == 0){ // 前一位为 0
int a = dp(s, ind + 1, s[ind] - '0'); // 保持1不变
s[ind] = '0';
int b = dp(s, ind + 1, s[ind] - '0') + 1; // 把当前1变为0,翻转次数加一
s[ind] = '1';
res += Math.min(a, b); // 取两者中最小的情况
}else if(pre == 1){
res += dp(s, ind + 1, s[ind] - '0'); // 前一位为1,当前位为1,当前1必须保持不变
}
}
memo[ind][pre] = res;
return res;
}
}
优化后
class Solution {
int[][] memo; // 备忘录
public int minFlipsMonoIncr(String s) {
int n = s.length();
memo = new int[n + 1][2];
for(int[] arr : memo){
Arrays.fill(arr, -1);
}
return dp(s.toCharArray(), 0, 0);
}
int dp(char[] s, int ind, int pre){ // sb是字符串,ind 是字符串当前位,pre 是前一位
if(ind == s.length){ // 到字符串结尾了,需要改变的字符为0,返回值为0
return 0;
}
if(memo[ind][pre] != -1){
return memo[ind][pre];
}
int res = 0;
if(s[ind] == '0'){ // 当前位为0
if(pre == 0){ // 前一位为 0
// 保持0不变;
// 把当前0变为1,翻转次数加一;
// 取两者中较小的情况
res = Math.min(dp(s, ind + 1, 0), dp(s, ind + 1, 1) + 1);
}else if(pre == 1){ // 前一位为 1
res = dp(s, ind + 1, 1) + 1; // 前一位为1,当前位为0,必须变成1
}
}else if(s[ind] == '1'){ // 当前位为1
if(pre == 0){ // 前一位为 0
// 保持1不变;
// 把当前1变为0,翻转次数加一;
// 取两者中较小的情况
res = Math.min(dp(s, ind + 1, 1), dp(s, ind + 1, 0) + 1);
}else if(pre == 1){
res = dp(s, ind + 1, 1); // 前一位为1,当前位为1,当前1必须保持不变
}
}
memo[ind][pre] = res;
return res;
}
}
一开始写的时候有个问题,就是在递归函数的参数中记录结果,递归到边界的时候得到结果,这样就是一个纯递归的思路。并没有转成子问题的形式,因此我后续进行备忘录优化始终无法成功。原因还是递归函数定义有问题。
纯递归的代码
class Solution {
int[][][] memo;
public int minFlipsMonoIncr(String s) {
StringBuilder sb = new StringBuilder(s);
int n = s.length();
memo = new int[n + 1][2][2];
for(int[][] arr : memo){
for(int[] a : arr)
Arrays.fill(a, -1);
}
return dp(sb, 0, 0,0 ,sb.charAt(0) - '0');
}
int dp(StringBuilder sb, int ind, int cnt, int pre, int now){
if(ind == sb.length()){
return cnt;
}
if(memo[ind][pre][now] != -1){
return memo[ind][pre][now];
}
int res = 0;
if(sb.charAt(ind) == '0'){
if(ind - 1 >= 0){
if(sb.charAt(ind - 1) == '0'){
int a = dp(sb, ind + 1, cnt, sb.charAt(ind - 1) - '0',0);
sb.setCharAt(ind, '1');
int b = dp(sb, ind + 1, cnt + 1, sb.charAt(ind - 1) - '0',1);
sb.setCharAt(ind, '0');
res += Math.min(a, b);
}else{
sb.setCharAt(ind, '1');
res += dp(sb, ind + 1, cnt + 1, sb.charAt(ind - 1) - '0',1);
sb.setCharAt(ind, '0');
}
}else{
int a = dp(sb, ind + 1, cnt, 0,0);
sb.setCharAt(ind, '1');
int b = dp(sb, ind + 1, cnt + 1, 0,1);
sb.setCharAt(ind, '0');
res += Math.min(a, b);
}
}else{
if(ind - 1 >= 0){
if(sb.charAt(ind - 1) == '0'){
int a = dp(sb, ind + 1, cnt, sb.charAt(ind - 1) - '0',1);
sb.setCharAt(ind, '0');
int b = dp(sb, ind + 1, cnt + 1, sb.charAt(ind - 1) - '0',0);
sb.setCharAt(ind, '1');
res += Math.min(a, b);
}else{
res += dp(sb, ind + 1, cnt, sb.charAt(ind - 1) - '0',1);
}
}else{
int a = dp(sb, ind + 1, cnt, 0,1);
sb.setCharAt(ind, '0');
int b = dp(sb, ind + 1, cnt + 1, 0,0);
sb.setCharAt(ind, '1');
res += Math.min(a, b);
}
}
memo[ind][pre][now] = res;
return res;
}
}
其中cnt就是最后的结果,这样可以通过数据量小的问题,但数据量大的问题必定会超时,而且无法利用记忆化搜索优化。
总结
不管是不是动态规划问题,首先写出递归的暴力解。如果超时,考虑有没有重叠子问题,此时就要注意递归函数的定义,递归函数的返回值应该是子问题的解。可能一开始结果保存在函数参数中是比较好想的。如果一开始写的递归函数是结果在函数参数里的形式,要考虑将结果定义在返回值中,此时需要明确递归函数的定义。
【力扣】剑指 Offer II 092. 翻转字符的更多相关文章
- 刷题-力扣-剑指 Offer II 055. 二叉搜索树迭代器
剑指 Offer II 055. 二叉搜索树迭代器 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/kTOapQ 著作权归领扣网络所有 ...
- 力扣 - 剑指 Offer 58 - I. 翻转单词顺序
题目 剑指 Offer 58 - I. 翻转单词顺序 思路1 假如题目要求我们翻转字符串,那么我们可以从末尾往前开始遍历每一个字符,同时将每一个字符添加到临时空间,最后输出临时空间的数据就完成翻转了, ...
- 力扣 - 剑指 Offer 53 - II. 0~n-1中缺失的数字
题目 剑指 Offer 53 - II. 0-n-1中缺失的数字 思路1 排序数组找数字使用二分法 通过题目,我们可以得到一个规律: 如果数组的索引值和该位置的值相等,说明还未缺失数字 一旦不相等了, ...
- 力扣 - 剑指 Offer 57 - II. 和为s的连续正数序列
题目 剑指 Offer 57 - II. 和为s的连续正数序列 思路1(双指针/滑动窗口) 所谓滑动窗口,就是需要我们从一个序列中找到某些连续的子序列,我们可以使用两个for循环来遍历查找,但是未免效 ...
- 力扣 - 剑指 Offer 55 - II. 平衡二叉树
题目 剑指 Offer 55 - II. 平衡二叉树 思路1(后序遍历+剪枝) 这题是上一题剑指 Offer 55 - I. 二叉树的深度的进阶,逻辑代码和那个一样,也是后续遍历,获取两个子节点较大的 ...
- 刷题-力扣-剑指 Offer 15. 二进制中1的个数
剑指 Offer 15. 二进制中1的个数 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/er-jin-zhi-zhong-1de- ...
- 刷题-力扣-剑指 Offer 42. 连续子数组的最大和
剑指 Offer 42. 连续子数组的最大和 题目链接 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/lian-xu-zi-shu-zu-de ...
- 力扣 - 剑指 Offer 09. 用两个栈实现队列
目录 题目 思路 代码 复杂度分析 题目 剑指 Offer 09. 用两个栈实现队列 思路 刚开始想的是用stack1作为数据存储的地方,stack2用来作为辅助栈,如果添加元素直接push入stac ...
- 力扣 - 剑指 Offer 37. 序列化二叉树
目录 题目 思路 代码 复杂度分析 题目 剑指 Offer 37. 序列化二叉树 思路 序列化其实就是层序遍历 但是,要能反序列化的话,前.中.后.层序遍历是不够的,必须在序列化时候保存所有信息,这样 ...
随机推荐
- 在vue中引入elementui
文章目录 1.下载安装 2.在main.js中引入 3.可以根据封装好的组件自行调用 官网地址:https://element.eleme.cn/#/zh-CN 1.下载安装 npm i elemen ...
- 齐博x1标签实例:标签的嵌套用法,调用聚合数据
齐博标签非常强大,可以让不懂程序的你,轻松就能实现所见即所得. 下面跟大家讲解一下,最复杂的运用, 同时使用了union 动态变量参数 与 分页处理标签 比如下面这张图,不仅仅想调用圈子,还想同时调用 ...
- 2.-url和视图函数
一.URL-结构 1.定义:统一资源定位符 Uniform Resource Locator 2.作用:用来表示互联网上某个资源地址 3.URL的一般语法格式为(注:[]代码其中的内容可以省略): 格 ...
- Vitepress搭建组件库文档(下)—— 组件 Demo
上文 <Vitepress搭建组件库文档(上)-- 基本配置>已经讨论了 vitepress 搭建组件库文档的基本配置,包括站点 Logo.名称.首页 home 布局.顶部导航.左侧导航等 ...
- idea如何生成jar包
最近在研究RMI反序列化命令执行的漏洞,让我这个java新手吃尽了苦头,能多学习一些是一些吧. 记录一下写好的java文件生成jar包的过程. 环境: Win10,jdk1.7, idea2016.2 ...
- C# 9.0 添加和增强的功能【基础篇】
一.记录(record) C# 9.0 引入了记录类型. 可使用 record 关键字定义一个引用类型,以最简的方式创建不可变类型.这种类型是线程安全的,不需要进行线程同步,非常适合并行计算的数据共享 ...
- Java安全之Mojarra JSF反序列化
Java安全之Mojarra JSF反序列化 About JSF JavaServer Faces,新一代的Java Web应用技术标准,吸收了很多Java Servlet以及其他的Web应用框架的特 ...
- Enum.Parse的使用
Enum的转换,用Enum.Parse() Enum.Parse()方法.这个方法带3个参数,第一个参数是要使用的枚举类型.其语法是关键字typeof后跟放在括号中的枚举类名.第二个参数是要转换的字符 ...
- 2022春每日一题:Day 27
题目:友好城市 分析一下可以转化为:选取最多的点对,使得点对之间连线没有交点,没有交点说明什么,假设选定第i组,则对于任意的j,一定满足a[i].l<a[j].l && a[i] ...
- ssh明文密码小工具:sshpass
Xshell 远程时可以用如下方式进行明文密码免交互登陆: ssh 用户:密码@ip 可换到linux时,就不行了,在某些不适合使用公钥免密的情况下,到底该怎样免交互登陆? 于是我找到了sshpass ...