经典的损失函数:交叉熵和MSE
经典的损失函数:
①交叉熵(分类问题):判断一个输出向量和期望向量有多接近。交叉熵刻画了两个概率分布之间的距离,他是分类问题中使用比较广泛的一种损失函数。概率分布刻画了不同事件发生的概率。
熵的定义:解决了对信息的量化度量问题,香农用信息熵的概念来描述信源的不确定度,第一次用数学语言阐明了概率与信息冗余度的关系。
从统计方面看交叉熵损失函数的含义:
Softmax:原始神经网路的输出被作用在置信度来生成新的输出,新的输出满足概率分布的所有要求。这样就把神经网络的输出变成了一个概率分布,从而可以通过交叉熵来计算预测的概率分布和真实答案的概率分布之间的距离。
②回归问题解决的是对具体数值的预测。这些问题需要预测的不是一个事先定义好的类别,而是一个任意的实数。解决回归问题的神经网络一般只有一个输出结点,这个结点的输出值就是预测值。对于回归问题,最常用的损失函数就是均方误差(MSE,mean squared error):
经典的损失函数:交叉熵和MSE的更多相关文章
- 机器学习之路:tensorflow 深度学习中 分类问题的损失函数 交叉熵
经典的损失函数----交叉熵 1 交叉熵: 分类问题中使用比较广泛的一种损失函数, 它刻画两个概率分布之间的距离 给定两个概率分布p和q, 交叉熵为: H(p, q) = -∑ p(x) log q( ...
- TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵
TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激 ...
- [ch03-02] 交叉熵损失函数
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力. 3.2 交叉熵损失函数 交叉熵(Cross Entrop ...
- 【深度学习】softmax回归——原理、one-hot编码、结构和运算、交叉熵损失
1. softmax回归是分类问题 回归(Regression)是用于预测某个值为"多少"的问题,如房屋的价格.患者住院的天数等. 分类(Classification)不是问&qu ...
- 第五节,损失函数:MSE和交叉熵
损失函数用于描述模型预测值与真实值的差距大小,一般有两种比较常见的算法——均值平方差(MSE)和交叉熵. 1.均值平方差(MSE):指参数估计值与参数真实值之差平方的期望值. 在神经网络计算时,预测值 ...
- 经典损失函数:交叉熵(附tensorflow)
每次都是看了就忘,看了就忘,从今天开始,细节开始,推一遍交叉熵. 我的第一篇CSDN,献给你们(有错欢迎指出啊). 一.什么是交叉熵 交叉熵是一个信息论中的概念,它原来是用来估算平均编码长度的.给定两 ...
- 深度学习原理与框架-神经网络结构与原理 1.得分函数 2.SVM损失函数 3.正则化惩罚项 4.softmax交叉熵损失函数 5. 最优化问题(前向传播) 6.batch_size(批量更新权重参数) 7.反向传播
神经网络由各个部分组成 1.得分函数:在进行输出时,对于每一个类别都会输入一个得分值,使用这些得分值可以用来构造出每一个类别的概率值,也可以使用softmax构造类别的概率值,从而构造出loss值, ...
- 【联系】二项分布的对数似然函数与交叉熵(cross entropy)损失函数
1. 二项分布 二项分布也叫 0-1 分布,如随机变量 x 服从二项分布,关于参数 μ(0≤μ≤1),其值取 1 和取 0 的概率如下: {p(x=1|μ)=μp(x=0|μ)=1−μ 则在 x 上的 ...
- 【机器学习基础】交叉熵(cross entropy)损失函数是凸函数吗?
之所以会有这个问题,是因为在学习 logistic regression 时,<统计机器学习>一书说它的负对数似然函数是凸函数,而 logistic regression 的负对数似然函数 ...
随机推荐
- Go单体服务开发最佳实践
单体最佳实践的由来 对于很多初创公司来说,业务的早期我们更应该关注于业务价值的交付,并且此时用户体量也很小,QPS 也非常低,我们应该使用更简单的技术架构来加速业务价值的交付,此时单体的优势就体现出来 ...
- AsyncLocal<T>在链路追踪中的应用
前言 在项目生产中日志的记录是必不可少的,在.net项目中,要说日志组件,log4net绝对可有一席之地,随着公司业务的发展,微服务则必定无可避免.在跨服务中通过日志进行分析性能或者排查故障点,如何快 ...
- ucore lab2 物理内存管理 学习笔记
总的来讲把的LAB1代码逻辑理顺后再往后学就轻松了一大截.LAB2过遍课程视频,再多翻翻实验指导书基本上就没遇到啥大坎儿.对这节学得东西做个总结就是一张图: 练习0:填写已有实验 本实验依赖实验1.请 ...
- 【代理是什么?】nginx快速入门+反向代理hexo个人博客
@ 目录 前言 本文说明 请大家务必查看 工作原理 正向代理 反向代理 环境准备 详细版 入门:搭建步骤 配置阿里云epel源: yum安装nginx: 启动nginx: 配置default.conf ...
- OAuth 2.1 框架
OAuth 2.1 Draft 当前版本:v2-1-05 失效时间:2022/09/08 本文对部分原文翻译,同时加了一些笔记,以便理解. 单词 译意 identifiler 识别码 Resource ...
- 1.7 Linux系统的优缺点
本节,我们介绍一下 Linux 系统的优缺点.Linux 不可比拟的优势如下. 1) 大量的可用软件及免费软件 Linux 系统上有着大量的可用软件,且绝大多数是免费的,比如声名赫赫的 Apache. ...
- wlile、 for循环和基本数据类型及内置方法
while + else 1.while与else连用 当while没有被关键字break主动结束的情况下 正常结束循环体代码之后执行else的子代码 """ while ...
- 无线:PIN码
PIN码(PIN1),全称Personal Identification Number.就是SIM卡的个人识别密码.手机的PIN码是保护SIM卡的一种安全措施,防止别人盗用SIM卡,如果启用了开机PI ...
- 4.0 vue绑定dom属性和函数的方法
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- 关于SpringBoot Admin server 监控注意事项
当你导入了依赖 <dependency> <groupId>de.codecentric</groupId> <artifactId>spring-bo ...