JZOJ 4270.【NOIP2015模拟10.27】魔道研究
魔道研究
题面

思路
简单的想,就是在 \(T\) 个可重集合每个中选出 \(k\) 个最大的数组成新的可重集合,其中 \(k\) 为其编号
然后在新的集合中选前 \(n\) 大的数,求其和
考虑开 \(T + 1\) 个权值线段树,维护对应的 \(T\) 个可重集合和答案可能在的第 \(T + 1\) 个代表新的集合的线段树
由于空间限制,我们需要动态开点(其实动态开点很简单,线段树二分下去时,遇到一个空节点再使用它。如此一来,在只需开可能使用的节点数)
然后维护区间个数,区间和(注意一个点可能有多个数)
因为是动态开点,所以再记录它的左、右子树的编号
对于 \(B\) 操作,我们直接在根为 \(t\) 的线段树中加入,然后考虑它能不能进入第 \(T + 1\) 棵线段树成为可能的答案。
即查它在第 \(t\) 棵线段树中的从大到小的排名(其实就是求第 \(t\) 棵线段树中 \(p\) 到上限的个数)和)。
如果它的排名 \(\leq t\) ,则可能加入第 \(T + 1\) 个线段树。加入后把现在排名为 \(t+1\) 的数从第 \(T + 1\) 棵线段树中删去(即原先的排名为 \(t\) 的数,它在第 \(T + 1\) 棵线段树中),当然,如果有的话。
对于 \(R\) 操作,就是 \(B\) 操作的逆操作,具体见代码。
\(Code\)
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long LL;
const int N = 3e5 , Len = 1e9;
int n , m , tot , len = N + 1;
LL tr[18000005][5];
inline void New(int t , int x){if (!tr[t][x]) tr[t][x] = ++len;}
inline void update(int t , int l , int r , int p , int v)
{
tr[t][2] += (LL)v;
tr[t][3] += (LL)p * v;
if (l == r) return;
int mid = (l + r) >> 1;
if (p <= mid)
{
if (!tr[t][0]) New(t , 0);
update(tr[t][0] , l , mid , p , v);
}
else{
if (!tr[t][1]) New(t , 1);
update(tr[t][1] , mid + 1 , r , p , v);
}
}
inline int findk(int t , int l , int r , int x , int y)
{
if (l >= x && r <= y) return (int)tr[t][2];
int res = 0 , mid = (l + r) >> 1;
if (x <= mid && tr[tr[t][0]][2]) res += findk(tr[t][0] , l , mid , x , y);
if (y > mid && tr[tr[t][1]][2]) res += findk(tr[t][1] , mid + 1 , r , x , y);
return res;
}
inline int kfind(int t , int l , int r , int k)
{
if (l == r) return k <= tr[t][2] ? l : 0;
int mid = (l + r) >> 1;
if (tr[tr[t][1]][2] < k) return kfind(tr[t][0] , l , mid , k - tr[tr[t][1]][2]);
else return kfind(tr[t][1] , mid + 1 , r , k);
}
inline LL query(int t , int l , int r , int k)
{
if (l == r) return 1LL * min(1LL * k , tr[t][2]) * l;
int mid = (l + r) >> 1;
LL res = 0;
if (tr[tr[t][1]][2] <= k)
{
res += tr[tr[t][1]][3];
if (tr[tr[t][0]][2] && k > tr[tr[t][1]][2])
res += query(tr[t][0] , l , mid , k - tr[tr[t][1]][2]);
}
else{
if (tr[tr[t][1]][2]) res += query(tr[t][1] , mid + 1 , r , k);
}
return res;
}
int main()
{
freopen("grimoire.in" , "r" , stdin);
freopen("grimoire.out" , "w" , stdout);
scanf("%d%d" , &n , &m);
int t , p;
char op[8];
for(register int i = 1; i <= m; i++)
{
int s1 , s2;
scanf("%s%d%d" , op , &t , &p);
if (op[0] == 'B')
{
update(t , 1 , Len , p , 1);
s1 = findk(t , 1 , Len , p , Len);
if (s1 <= t)
{
update(N + 1 , 1 , Len , p , 1);
s2 = kfind(t , 1 , Len , t + 1);
if (s2) update(N + 1 , 1 , Len , s2 , -1);
}
}
else{
s1 = findk(t , 1 , Len , p , Len);
update(t , 1 , Len , p , -1);
if (s1 <= t)
{
update(N + 1 , 1 , Len , p , -1);
s2 = kfind(t , 1 , Len , t);
if (s2) update(N + 1 , 1 , Len , s2 , 1);
}
}
printf("%lld\n" , query(N + 1 , 1 , Len , n));
}
}
JZOJ 4270.【NOIP2015模拟10.27】魔道研究的更多相关文章
- JZOJ 4269. 【NOIP2015模拟10.27】挑竹签
4269. [NOIP2015模拟10.27]挑竹签 (File IO): input:mikado.in output:mikado.out Time Limits: 1000 ms Memory ...
- [NOIP2015模拟10.27] [JZOJ4270] 魔道研究 解题报告(动态开点+权值线段树上二分)
Description “我希望能使用更多的魔法.不对,是预定能使用啦.最终我要被大家称呼为大魔法使.为此我决定不惜一切努力.”——<The Grimoire of Marisa>雾雨魔理 ...
- [jzoj]4271. 【NOIP2015模拟10.27】魔法阵(37种转移的dp)
题意不说 应该这辈子都不会忘记了... 这是我人生中做的最SB的一道DP题. 真的打的我心态崩了.... 可是竟然被我调出来了..... 也是没谁了... 我们设\(F[i][j][S]\)表示到第\ ...
- [NOIP2015模拟10.27] 挑竹签 解题报告(拓扑排序)
Description 挑竹签——小时候的游戏夏夜,早苗和诹访子在月光下玩起了挑竹签这一经典的游戏.挑竹签,就是在桌上摆上一把竹签,每次从最上层挑走一根竹签.如果动了其他的竹签,就要换对手来挑.在所有 ...
- JZOJ 4273. 【NOIP2015模拟10.28B组】圣章-精灵使的魔法语
4273. [NOIP2015模拟10.28B组]圣章-精灵使的魔法语 (File IO): input:elf.in output:elf.out Time Limits: 1000 ms Mem ...
- JZOJ 4272. 【NOIP2015模拟10.28B组】序章-弗兰德的秘密
272. [NOIP2015模拟10.28B组]序章-弗兰德的秘密 (File IO): input:frand.in output:frand.out Time Limits: 1000 ms M ...
- [JZOJ 5912] [NOIP2018模拟10.18] VanUSee 解题报告 (KMP+博弈)
题目链接: https://jzoj.net/senior/#contest/show/2530/2 题目: 众所周知,cqf童鞋对哲学有着深入的理解和认识,并常常将哲学思想应用在实际生活中,例如锻炼 ...
- [NOIP2015模拟10.22] 最小代价 解题报告 (最小生成树)
Description 给出一幅由n个点m条边构成的无向带权图.其中有些点是黑点,其他点是白点.现在每个白点都要与他距离最近的黑点通过最短路连接(如果有很多个黑点,可以选取其中任意一个),我们想要使得 ...
- [jzoj 5926] [NOIP2018模拟10.25] naive 的图 解题报告(kruskal重构树+二维数点)
题目链接: https://jzoj.net/senior/#main/show/5926 题目: 题解: 显然最小的最大路径在最小生成树上(最小生成树=最小瓶颈生成树) 于是我们建出kruskal重 ...
- [JZOJ 5893] [NOIP2018模拟10.4] 括号序列 解题报告 (Hash+栈+map)
题目链接: https://jzoj.net/senior/#main/show/5893 题目: 题解: 考虑暴力怎么做,我们枚举左端点,维护一个栈,依次加入元素,与栈顶元素和栈内第二个元素相同时弹 ...
随机推荐
- python3小技巧总结(实时更新)
1.列表解析 如果一个想将一个列表中的大于0的数字过滤,一般可能会用到lambd结合filter,或者就是直接遍历,不过最好的解决办法是这样: b = [1,0,-1,-2] a = [i for i ...
- 【Java】FileUtils-获取路径的所有文件(或文件夹)
一.获取指定路径下的所有Excel文件 package com.boulderaitech.utils; import java.io.File; import java.util.Arrays; p ...
- 【Java EE】Day13 Web概念回顾、Tomcat、Servlet
一.Web相关概念的回顾 1.软件架构 C/S B/S 2.资源分类 静态资源 所有用户访问得到相同结果 三剑客 浏览器通过静态解析引擎将从服务器接收到的静态资源显示到页面上 动态资源 不同用户访问得 ...
- MYSQL-INNODB索引构成详解
作者:郑啟龙 摘要: 对于MYSQL的INNODB存储引擎的索引,大家是不陌生的,都能想到是 B+树结构,可以加速SQL查询.但对于B+树索引,它到底"长"得什么样子,它具体如何由 ...
- Spring IOC源码(二):IOC容器之 刷新前的准备
1.源码解析 prepareRefresh()容器刷新refresh()的第一个方法,是容器刷新前的准备工作. 1 // 容器启动的开始时间 毫秒级 2 private long startupDat ...
- psutil模块使用(系统监控,性能分析,进程管理)
psutil模块的介绍 在Python中,我们可以使用psutil这个第三方模块去获取信息的信息. psutil模块可以跨平台使用,支持Linux/UNIX/OSX/Windows等,它主要用来做系统 ...
- 记一次 .NET 某安全生产信息系统 CPU爆高分析
一:背景 1.讲故事 今天是的第四天,头终于不巨疼了,写文章已经没什么问题,赶紧爬起来写. 这个月初有位朋友找到我,说他的程序出现了CPU爆高,让我帮忙看下怎么回事,简单分析了下有两点比较有意思. 这 ...
- js将时间戳转成时间格式
let start_time = 1653007401082, date = new Date(+start_time), Y = date.getFullYear() + '-', M = (dat ...
- SAP-FI模块 如何处理自动生成会计凭证增强
一. 相关问题概览 1. 固定资产业务过渡科目摘要增强功能-F-02 需用表BKPF.BSEG.T001.通过BUKRS.BELNR.GJAHR三个字段相等关联BKPF与BSEG.通过BKPF ...
- [深度学习] caffe分类模型训练、结果可视化、部署及量化笔记
本文为本人caffe分类网络训练.结果可视化.部署及量化具体过程的心得笔记.caffe目前官方已经停止支持了,但是caffe是目前工业落地最常用的深度学习框架,用的人挺多.其实主要怕自己忘了,弄个备份 ...