猫猫这么可爱 不会有人不喜欢吧:

猫猫真的很可爱,和我女朋友一样可爱~
你们可以和女朋友一起养一只可爱猫猫
女朋友都有的吧?啊没有的话当我没说…咳咳

网上的数据太多、太杂,而且我也不知道哪个网站的数据比较好。所以,只能找到一个猫咪交易网站的数据来分析了

地址:

http://www.maomijiaoyi.com/

正式开搞!

请求数据

import requests

url = f'http://www.maomijiaoyi.com/index.php?/chanpinliebiao_c_2_1--24.html'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36'
}
response = requests.get(url=url, headers=headers)
print(response.text)

解析数据

# 把获取到的 html 字符串数据转换成 selector 对象 这样调用
selector = parsel.Selector(response.text)
# css 选择器只要是根据标签属性内容提取数据 编程永远不看过程 只要结果
href = selector.css('.content:nth-child(1) a::attr(href)').getall()
areas = selector.css('.content:nth-child(1) .area .color_333::text').getall()
areas = [i.strip() for i in areas] # 列表推导式

提取标签数据
小熊猫的python第二世界Q裙:660193417

for index in zip(href, areas):
# http://www.maomijiaoyi.com/index.php?/chanpinxiangqing_224383.html
index_url = 'http://www.maomijiaoyi.com' + index[0]
response_1 = requests.get(url=index_url, headers=headers)
selector_1 = parsel.Selector(response_1.text)
area = index[1]
# getall 取所有 get 取一个
title = selector_1.css('.detail_text .title::text').get().strip()
shop = selector_1.css('.dinming::text').get().strip() # 店名
price = selector_1.css('.info1 div:nth-child(1) span.red.size_24::text').get() # 价格
views = selector_1.css('.info1 div:nth-child(1) span:nth-child(4)::text').get() # 浏览次数
# replace() 替换
promise = selector_1.css('.info1 div:nth-child(2) span::text').get().replace('卖家承诺: ', '') # 浏览次数
num = selector_1.css('.info2 div:nth-child(1) div.red::text').get() # 在售只数
age = selector_1.css('.info2 div:nth-child(2) div.red::text').get() # 年龄
kind = selector_1.css('.info2 div:nth-child(3) div.red::text').get() # 品种
prevention = selector_1.css('.info2 div:nth-child(4) div.red::text').get() # 预防
person = selector_1.css('div.detail_text .user_info div:nth-child(1) .c333::text').get() # 联系人
phone = selector_1.css('div.detail_text .user_info div:nth-child(2) .c333::text').get() # 联系方式
postage = selector_1.css('div.detail_text .user_info div:nth-child(3) .c333::text').get().strip() # 包邮
purebred = selector_1.css(
'.xinxi_neirong div:nth-child(1) .item_neirong div:nth-child(1) .c333::text').get().strip() # 是否纯种
sex = selector_1.css(
'.xinxi_neirong div:nth-child(1) .item_neirong div:nth-child(4) .c333::text').get().strip() # 猫咪性别
video = selector_1.css(
'.xinxi_neirong div:nth-child(2) .item_neirong div:nth-child(4) .c333::text').get().strip() # 能否视频
worming = selector_1.css(
'.xinxi_neirong div:nth-child(2) .item_neirong div:nth-child(2) .c333::text').get().strip() # 是否驱虫
dit = {
'地区': area,
'店名': shop,
'标题': title,
'价格': price,
'浏览次数': views,
'卖家承诺': promise,
'在售只数': num,
'年龄': age,
'品种': kind,
'预防': prevention,
'联系人': person,
'联系方式': phone,
'异地运费': postage,
'是否纯种': purebred,
'猫咪性别': sex,
'驱虫情况': worming,
'能否视频': video,
'详情页': index_url,
}

保存数据

import csv # 内置模块

f = open('猫咪1.csv', mode='a', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['地区', '店名', '标题', '价格', '浏览次数', '卖家承诺', '在售只数',
'年龄', '品种', '预防', '联系人', '联系方式', '异地运费', '是否纯种',
'猫咪性别', '驱虫情况', '能否视频', '详情页'])
csv_writer.writeheader() # 写入表头
csv_writer.writerow(dit)
print(title, area, shop, price, views, promise, num, age,
kind, prevention, person, phone, postage, purebred, sex, video, worming, index_url, sep=' | ')

得到数据

数据可视化部分

词云图

from pyecharts import options as opts
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType
from pyecharts.globals import ThemeType words = [(i,1) for i in cat_info['品种'].unique()]
c = (
WordCloud(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add("", words,shape=SymbolType.DIAMOND)
.set_global_opts(title_opts=opts.TitleOpts(title=""))
)
c.render_notebook()

**
交易品种占比图

from pyecharts import options as opts
from pyecharts.charts import TreeMap pingzhong = cat_info['品种'].value_counts().reset_index()
data = [{'value':i[1],'name':i[0]} for i in zip(list(pingzhong['index']),list(pingzhong['品种']))] c = (
TreeMap(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add("", data)
.set_global_opts(title_opts=opts.TitleOpts(title=""))
.set_series_opts(label_opts=opts.LabelOpts(position="inside"))
) c.render_notebook()


均价占比图

from pyecharts import options as opts
from pyecharts.charts import PictorialBar
from pyecharts.globals import SymbolType location = list(price['品种'])
values = list(price['价格']) c = (
PictorialBar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(location)
.add_yaxis(
"",
values,
label_opts=opts.LabelOpts(is_show=False),
symbol_size=18,
symbol_repeat="fixed",
symbol_offset=[0, 0],
is_symbol_clip=True,
symbol=SymbolType.ROUND_RECT,
)
.reversal_axis()
.set_global_opts(
title_opts=opts.TitleOpts(title="均价排名"),
xaxis_opts=opts.AxisOpts(is_show=False),
yaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_show=False),
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(opacity=0), ),
),
)
.set_series_opts(
label_opts=opts.LabelOpts(position='insideRight')
)
) c.render_notebook()


猫龄柱状图

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker x = ['1-3个月','3-6个月','6-9个月','9-12个月','1年以上']
y = [69343,115288,18239,4139,5] c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(x)
.add_yaxis('', y)
.set_global_opts(title_opts=opts.TitleOpts(title="猫龄分布"))
) c.render_notebook()

Python爬虫+数据可视化教学:分析猫咪交易数据的更多相关文章

  1. Python爬虫+可视化教学:爬取分析宠物猫咪交易数据

    前言 各位,七夕快到了,想好要送什么礼物了吗? 昨天有朋友私信我,问我能用Python分析下网上小猫咪的数据,是想要送一只给女朋友,当做礼物. Python从零基础入门到实战系统教程.源码.视频 网上 ...

  2. 【Matplotlib】数据可视化实例分析

    数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令 ...

  3. 利用selenium 爬取豆瓣 武林外传数据并且完成 数据可视化 情绪分析

    全文的步骤可以大概分为几步: 一:数据获取,利用selenium+多进程(linux上selenium 多进程可能会有问题)+kafka写数据(linux首选必选耦合)windows直接采用的是写my ...

  4. Python爬虫:新浪新闻详情页的数据抓取(函数版)

    上一篇文章<Python爬虫:抓取新浪新闻数据>详细解说了如何抓取新浪新闻详情页的相关数据,但代码的构建不利于后续扩展,每次抓取新的详情页时都需要重新写一遍,因此,我们需要将其整理成函数, ...

  5. Python爬虫《爬取get请求的页面数据》

    一.urllib库 urllib是Python自带的一个用于爬虫的库,其主要作用就是可以通过代码模拟浏览器发送请求.其常被用到的子模块在Python3中的为urllib.request和urllib. ...

  6. Python图表数据可视化Seaborn:1. 风格| 分布数据可视化-直方图| 密度图| 散点图

    conda  install seaborn  是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / se ...

  7. [Python爬虫] 之八:Selenium +phantomjs抓取微博数据

    基本思路:在登录状态下,打开首页,利用高级搜索框输入需要查询的条件,点击搜索链接进行搜索.如果数据有多页,每页数据是20条件,读取页数 然后循环页数,对每页数据进行抓取数据. 在实践过程中发现一个问题 ...

  8. 爱奇艺用券付费VIP电影+python爬虫程序+可视化界面+下载本地

    申明:本博客中的工具及源码仅供个人学习使用,请勿用作商业等其他任何违法用途!否则后果自负 直接步入正题吧! 工具开发环境:windows10,python3.6 工具界面设计:基于python 自带的 ...

  9. 数据可视化之分析篇(二)Power BI 数据分析:客户购买频次分布

    https://zhuanlan.zhihu.com/p/100070260 商业数据分析通常都可以简化为对数据进行筛选.分组.汇总的过程,本文通过一个实例来看看PowerBI是如何快速完成整个过程的 ...

随机推荐

  1. 2021年3月-第02阶段-前端基础-HTML+CSS阶段-Day03

    HTML5 第三天 一. 认识 3D 转换 3D 的特点 近大远小 物体和面遮挡不可见 三维坐标系 x 轴:水平向右 -- 注意:x 轴右边是正值,左边是负值 y 轴:垂直向下 -- 注意:y 轴下面 ...

  2. HCNP Routing&Switching之代理ARP

    前文我们了解了端口隔离相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/16186451.html:今天我们来聊一聊ARP代理相关话题: 端口隔离之破解之 ...

  3. Runable与Callable的区别

    Runable与Callable的区别: public interface Callable<V> { V call() throws Exception;//V是Callable返回值的 ...

  4. vue 列表过滤和排序

    <body> <div id="root"> <h1>员工列表</h1> <input type="text&quo ...

  5. js运算符、 流程控制 、函数、内置对象、BOM与DOM操作

    运算符 # 1.算术运算符 var x=10; var res1=x++; '先赋值后自增1' var res2=++x; '先自增1后赋值' # 2.比较运算符 弱等于:自动转换类型 '5' == ...

  6. AC自动机:Tire树+KMP

    简介 AC自动机是一个多模式匹配算法,在模式匹配领域被广泛应用,举一个经典的例子,违禁词查找并替换为***.AC自动机其实是Trie树和KMP 算法的结合,首先将多模式串建立一个Tire树,然后结合K ...

  7. Blazor和Vue对比学习(基础1.9):表单输入绑定和验证,VeeValidate和EditFrom

    这是基础部分的最后一章,内容比较简单,算是为基础部分来个HappyEnding.我们分三个部分来学习: 表单输入绑定 Vue的表单验证:VeeValidate Blazor的表单验证:EditForm ...

  8. 234. Palindrome Linked List - LeetCode

    Question 234. Palindrome Linked List Solution 题目大意:给一个链表,判断是该链表中的元素组成的串是否回文 思路:遍历链表添加到一个list中,再遍历lis ...

  9. 137_Power BI 自定义矩阵复刻Beyondsoft Calendar

    博客:www.jiaopengzi.com 焦棚子的文章目录 请点击下载附件 一.背景 前两天我们用PBI原生的视觉制作了自定义的热力图,今天我们来复刻一个Beyondsoft Calendar 1. ...

  10. goose消元

    ps.改了标题 魔板 思路:按序消除变量,用当前行(i)[行i消\(x_i\)元素],消后面的每一行的i元素 最后按逆序回代值 注意若有i~n行i元素系数都为0说明没有唯一解(其余x的解跟i元素有关) ...