猫猫这么可爱 不会有人不喜欢吧:

猫猫真的很可爱,和我女朋友一样可爱~
你们可以和女朋友一起养一只可爱猫猫
女朋友都有的吧?啊没有的话当我没说…咳咳

网上的数据太多、太杂,而且我也不知道哪个网站的数据比较好。所以,只能找到一个猫咪交易网站的数据来分析了

地址:

http://www.maomijiaoyi.com/

正式开搞!

请求数据

import requests

url = f'http://www.maomijiaoyi.com/index.php?/chanpinliebiao_c_2_1--24.html'
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36'
}
response = requests.get(url=url, headers=headers)
print(response.text)

解析数据

# 把获取到的 html 字符串数据转换成 selector 对象 这样调用
selector = parsel.Selector(response.text)
# css 选择器只要是根据标签属性内容提取数据 编程永远不看过程 只要结果
href = selector.css('.content:nth-child(1) a::attr(href)').getall()
areas = selector.css('.content:nth-child(1) .area .color_333::text').getall()
areas = [i.strip() for i in areas] # 列表推导式

提取标签数据
小熊猫的python第二世界Q裙:660193417

for index in zip(href, areas):
# http://www.maomijiaoyi.com/index.php?/chanpinxiangqing_224383.html
index_url = 'http://www.maomijiaoyi.com' + index[0]
response_1 = requests.get(url=index_url, headers=headers)
selector_1 = parsel.Selector(response_1.text)
area = index[1]
# getall 取所有 get 取一个
title = selector_1.css('.detail_text .title::text').get().strip()
shop = selector_1.css('.dinming::text').get().strip() # 店名
price = selector_1.css('.info1 div:nth-child(1) span.red.size_24::text').get() # 价格
views = selector_1.css('.info1 div:nth-child(1) span:nth-child(4)::text').get() # 浏览次数
# replace() 替换
promise = selector_1.css('.info1 div:nth-child(2) span::text').get().replace('卖家承诺: ', '') # 浏览次数
num = selector_1.css('.info2 div:nth-child(1) div.red::text').get() # 在售只数
age = selector_1.css('.info2 div:nth-child(2) div.red::text').get() # 年龄
kind = selector_1.css('.info2 div:nth-child(3) div.red::text').get() # 品种
prevention = selector_1.css('.info2 div:nth-child(4) div.red::text').get() # 预防
person = selector_1.css('div.detail_text .user_info div:nth-child(1) .c333::text').get() # 联系人
phone = selector_1.css('div.detail_text .user_info div:nth-child(2) .c333::text').get() # 联系方式
postage = selector_1.css('div.detail_text .user_info div:nth-child(3) .c333::text').get().strip() # 包邮
purebred = selector_1.css(
'.xinxi_neirong div:nth-child(1) .item_neirong div:nth-child(1) .c333::text').get().strip() # 是否纯种
sex = selector_1.css(
'.xinxi_neirong div:nth-child(1) .item_neirong div:nth-child(4) .c333::text').get().strip() # 猫咪性别
video = selector_1.css(
'.xinxi_neirong div:nth-child(2) .item_neirong div:nth-child(4) .c333::text').get().strip() # 能否视频
worming = selector_1.css(
'.xinxi_neirong div:nth-child(2) .item_neirong div:nth-child(2) .c333::text').get().strip() # 是否驱虫
dit = {
'地区': area,
'店名': shop,
'标题': title,
'价格': price,
'浏览次数': views,
'卖家承诺': promise,
'在售只数': num,
'年龄': age,
'品种': kind,
'预防': prevention,
'联系人': person,
'联系方式': phone,
'异地运费': postage,
'是否纯种': purebred,
'猫咪性别': sex,
'驱虫情况': worming,
'能否视频': video,
'详情页': index_url,
}

保存数据

import csv # 内置模块

f = open('猫咪1.csv', mode='a', encoding='utf-8', newline='')
csv_writer = csv.DictWriter(f, fieldnames=['地区', '店名', '标题', '价格', '浏览次数', '卖家承诺', '在售只数',
'年龄', '品种', '预防', '联系人', '联系方式', '异地运费', '是否纯种',
'猫咪性别', '驱虫情况', '能否视频', '详情页'])
csv_writer.writeheader() # 写入表头
csv_writer.writerow(dit)
print(title, area, shop, price, views, promise, num, age,
kind, prevention, person, phone, postage, purebred, sex, video, worming, index_url, sep=' | ')

得到数据

数据可视化部分

词云图

from pyecharts import options as opts
from pyecharts.charts import WordCloud
from pyecharts.globals import SymbolType
from pyecharts.globals import ThemeType words = [(i,1) for i in cat_info['品种'].unique()]
c = (
WordCloud(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add("", words,shape=SymbolType.DIAMOND)
.set_global_opts(title_opts=opts.TitleOpts(title=""))
)
c.render_notebook()

**
交易品种占比图

from pyecharts import options as opts
from pyecharts.charts import TreeMap pingzhong = cat_info['品种'].value_counts().reset_index()
data = [{'value':i[1],'name':i[0]} for i in zip(list(pingzhong['index']),list(pingzhong['品种']))] c = (
TreeMap(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add("", data)
.set_global_opts(title_opts=opts.TitleOpts(title=""))
.set_series_opts(label_opts=opts.LabelOpts(position="inside"))
) c.render_notebook()


均价占比图

from pyecharts import options as opts
from pyecharts.charts import PictorialBar
from pyecharts.globals import SymbolType location = list(price['品种'])
values = list(price['价格']) c = (
PictorialBar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(location)
.add_yaxis(
"",
values,
label_opts=opts.LabelOpts(is_show=False),
symbol_size=18,
symbol_repeat="fixed",
symbol_offset=[0, 0],
is_symbol_clip=True,
symbol=SymbolType.ROUND_RECT,
)
.reversal_axis()
.set_global_opts(
title_opts=opts.TitleOpts(title="均价排名"),
xaxis_opts=opts.AxisOpts(is_show=False),
yaxis_opts=opts.AxisOpts(
axistick_opts=opts.AxisTickOpts(is_show=False),
axisline_opts=opts.AxisLineOpts(
linestyle_opts=opts.LineStyleOpts(opacity=0), ),
),
)
.set_series_opts(
label_opts=opts.LabelOpts(position='insideRight')
)
) c.render_notebook()


猫龄柱状图

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker x = ['1-3个月','3-6个月','6-9个月','9-12个月','1年以上']
y = [69343,115288,18239,4139,5] c = (
Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(x)
.add_yaxis('', y)
.set_global_opts(title_opts=opts.TitleOpts(title="猫龄分布"))
) c.render_notebook()

Python爬虫+数据可视化教学:分析猫咪交易数据的更多相关文章

  1. Python爬虫+可视化教学:爬取分析宠物猫咪交易数据

    前言 各位,七夕快到了,想好要送什么礼物了吗? 昨天有朋友私信我,问我能用Python分析下网上小猫咪的数据,是想要送一只给女朋友,当做礼物. Python从零基础入门到实战系统教程.源码.视频 网上 ...

  2. 【Matplotlib】数据可视化实例分析

    数据可视化实例分析 作者:白宁超 2017年7月19日09:09:07 摘要:数据可视化主要旨在借助于图形化手段,清晰有效地传达与沟通信息.但是,这并不就意味着数据可视化就一定因为要实现其功能用途而令 ...

  3. 利用selenium 爬取豆瓣 武林外传数据并且完成 数据可视化 情绪分析

    全文的步骤可以大概分为几步: 一:数据获取,利用selenium+多进程(linux上selenium 多进程可能会有问题)+kafka写数据(linux首选必选耦合)windows直接采用的是写my ...

  4. Python爬虫:新浪新闻详情页的数据抓取(函数版)

    上一篇文章<Python爬虫:抓取新浪新闻数据>详细解说了如何抓取新浪新闻详情页的相关数据,但代码的构建不利于后续扩展,每次抓取新的详情页时都需要重新写一遍,因此,我们需要将其整理成函数, ...

  5. Python爬虫《爬取get请求的页面数据》

    一.urllib库 urllib是Python自带的一个用于爬虫的库,其主要作用就是可以通过代码模拟浏览器发送请求.其常被用到的子模块在Python3中的为urllib.request和urllib. ...

  6. Python图表数据可视化Seaborn:1. 风格| 分布数据可视化-直方图| 密度图| 散点图

    conda  install seaborn  是安装到jupyter那个环境的 1. 整体风格设置 对图表整体颜色.比例等进行风格设置,包括颜色色板等调用系统风格进行数据可视化 set() / se ...

  7. [Python爬虫] 之八:Selenium +phantomjs抓取微博数据

    基本思路:在登录状态下,打开首页,利用高级搜索框输入需要查询的条件,点击搜索链接进行搜索.如果数据有多页,每页数据是20条件,读取页数 然后循环页数,对每页数据进行抓取数据. 在实践过程中发现一个问题 ...

  8. 爱奇艺用券付费VIP电影+python爬虫程序+可视化界面+下载本地

    申明:本博客中的工具及源码仅供个人学习使用,请勿用作商业等其他任何违法用途!否则后果自负 直接步入正题吧! 工具开发环境:windows10,python3.6 工具界面设计:基于python 自带的 ...

  9. 数据可视化之分析篇(二)Power BI 数据分析:客户购买频次分布

    https://zhuanlan.zhihu.com/p/100070260 商业数据分析通常都可以简化为对数据进行筛选.分组.汇总的过程,本文通过一个实例来看看PowerBI是如何快速完成整个过程的 ...

随机推荐

  1. 【LeetCode】24.两两交换链表中的节点

    24.两两交换链表中的节点 知识点:链表 题目描述 给你一个链表,两两交换其中相邻的节点,并返回交换后链表的头节点.你必须在不修改节点内部的值的情况下完成本题(即,只能进行节点交换). 示例 示例 1 ...

  2. python基础练习题(题目 统计 1 到 100 之和)

    day31 --------------------------------------------------------------- 实例045:求和 题目 统计 1 到 100 之和. 分析: ...

  3. SpringBoot 三层架构 Controller、Service、Dao作用和关系详解

    首先创建一个springboot项目. model层 model层也叫pojo层或者entity层,个人比较喜欢pojo层. 一般数据库的一张表对应一个pojo层,并且表中所有字段都在pojo层都一一 ...

  4. 树莓派开发笔记(十二):入手研华ADVANTECH工控树莓派UNO-220套件(一):介绍和运行系统

    前言   树莓派也可以做商业应用,工业控制,其稳定性和可靠性已经得到了验证,故而工业控制,一些停车场等场景也有采用树莓派作为主控的,本片介绍了研华ADVANTECH的树莓派套件组UNO-220-P4N ...

  5. Day 007:PAT训练--1108 Finding Average (20 分)

    话不多说: 该题要求将给定的所有数分为两类,其中这两类的个数差距最小,且这两类分别的和差距最大. 可以发现,针对第一个要求,个数差距最小,当给定个数为偶数时,二分即差距为0,最小:若给定个数为奇数时, ...

  6. Day 005:PAT练习--1047. 编程团体赛(20)

    编程团体赛的规则为:每个参赛队由若干队员组成:所有队员独立比赛:参赛队的成绩为所有队员的成绩和:成绩最高的队获胜.现给定所有队员的比赛成绩,请你编写程序找出冠军队. 输入格式: 输入第一行给出一个正整 ...

  7. Nature | DNA甲基化测序助力人多能干细胞向胚胎全能8细胞的人工诱导|易基因项目文章

    北京时间2022年3月22日凌晨,<Nature>期刊在线刊登了由中国科学院广州生物医学与健康研究所等单位牵头,深圳市易基因科技有限公司.中国科学技术大学等单位参与,应用人多能干细胞向胚胎 ...

  8. Focal and Global Knowledge Distillation for Detectors

    一. 概述 论文地址:链接 代码地址:链接 论文简介: 此篇论文是在CGNet上增加部分限制loss而来 核心部分是将gt框变为mask进行蒸馏 注释:仅为阅读论文和代码,未进行试验,如有漏错请不吝指 ...

  9. 理解 Angular 服务

    理解 Angular 服务 本文写于 2021 年 3 月 29 日 理解 Angular 服务 什么是服务 服务写法 原理简述 提供服务 1. 在服务中注册 2. 在 module 中注册 3. 在 ...

  10. tomcat 1.2 负载均衡

    实验效果:访问同一个ip或域名,轮询显示两个不同的tomcat界面, nginx服务器ip:192.168.213.4       tomcat服务器ip:192.168.213.3 实验环境:两台服 ...