Solution

由数论基础知识 答案即为$$\sum_{i = 1}^n\sum_{j = 1}^m[i \perp j][j \perp k]$$

莫反套路可化为$$\sum_{d = 1}\mu(d)[d \perp k] \lfloor \frac{n}{d} \rfloor \sum_{j=1}^{\lfloor \frac{m}{d} \rfloor}[j \perp k]$$

如果我们可以求出\(g(x)=\sum_{i=1}^x [x \perp k]\),那么后面那坨东西就容易分块搞掉

然后我们惊奇的发现\(g(n)=\lfloor \frac{n}{k} \rfloor g(k) + g(n\mod k)\)

然后我们只需要求\(f(n)=\sum_{i=1}^n \mu(i)[i \perp k]\)的前缀和了

这一部分是本题难点。

发现

\[\begin{aligned}
f(n)&=\sum_{i=1}^n f(\lfloor \frac{n}{i} \rfloor)[i \perp k] - \sum_{i=2}^n f(\lfloor \frac{n}{i} \rfloor)[i \perp k] \\
&=\sum_{i=1}^n \sum_{j=1}^{\lfloor \frac{n}{i} \rfloor} \mu(j) [ij \perp k] - \sum_{i=2}^n f(\lfloor \frac{n}{i} \rfloor)[i \perp k]\\
&=\sum_{T=1}^n [T \perp k] \sum_{d | k}\mu(d) - \sum_{i=2}^n f(\lfloor \frac{n}{i} \rfloor)[i \perp k] \\
&=1 - \sum_{i=2}^n f(\lfloor \frac{n}{i} \rfloor)[i \perp k]
\end{aligned}
\]

至此,我们成功构造出了杜教筛式子。

问题迎刃而解。

Code

#include <cstdio>
#include <iostream>
#include <map>
#define LL long long
using namespace std;
inline LL read() {
LL res = 0; char ch = getchar();
for(; !isdigit(ch); ch = getchar());
for(; isdigit(ch); ch = getchar()) res = (res << 1) + (res << 3) + (ch ^ 48);
return res;
}
int n, k, vis[3000000], p[3000000], cnt, g[3000000], m, mu[3000000], f[3000000];
LL ans;
void Sieve() {
mu[1] = 1;
for(int i = 2; i <= 2000000; ++i) {
if(!vis[i]) p[++cnt] = i, mu[i] = -1;
for(int j = 1; j <= cnt && p[j] * i <= 2000000; ++j) {
vis[i * p[j]] = 1;
if(i % p[j] == 0) break;
mu[i * p[j]] = - mu[i];
}
}
}
int gcd(int x, int y) {return (y == 0) ? x : gcd(y, x % y);}
map <int, LL> re;
void Init() {
for(int i = 1; i <= k; ++i) {
g[i] = g[i - 1];
if(gcd(i, k) == 1) ++ g[i];
}
for(int i = 1; i <= 2000000; ++i) {
f[i] = f[i - 1];
if(gcd(i, k) == 1) f[i] += mu[i];
}
return ;
}
LL G(int x, int y) {return x / y * g[y] + g[x % y];}
LL F(int x) {
if(x <= 2000000) return f[x];
if(re.find(x) != re.end()) return re[x];
LL res = 1;
for(int l = 2, r; l <= x; l = r + 1) {
r = x / (x / l);
res -= F(x / l) * (G(r, k) - G(l - 1, k));
}
return re[x] = res;
}
int main() {
n = read(), m = read(), k = read();
Sieve();
Init();
for(int l = 1, r; l <= n && l <= m; l = r + 1) {
r = min(n / (n / l), m / (m / l));
ans = ans + 1ll * (F(r) - F(l - 1)) * (n / l) * G(m / l, k);
}
printf("%lld\n",ans);
}

【NOI2016】 循环之美 题解的更多相关文章

  1. [UOJ#221][BZOJ4652][Noi2016]循环之美

    [UOJ#221][BZOJ4652][Noi2016]循环之美 试题描述 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k 进制下,一个数的小数部 ...

  2. luogu 1587 [NOI2016]循环之美

    LINK:NOI2016循环之美 这道题是 给出n m k 求出\(1\leq i\leq n,1\leq j\leq m\) \(\frac{i}{j}\)在k进制下是一个纯循环的. 由于数值相同的 ...

  3. 题解 P1587 【[NOI2016]循环之美】

    知识点:莫比乌斯反演 积性函数 杜教筛 废话前言: 我是古明地恋,写这篇题解的人已经被我 请各位读者自行无视搞事的恋恋带有删除线的内容,谢谢茄子. 这道题目本身并不难,但是公式推导/代码过程中具有迷惑 ...

  4. bzoj4652 [Noi2016]循环之美

    Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在k进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对于已知 ...

  5. [NOI2016]循环之美

    Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k  进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对 ...

  6. BZOJ4652 [Noi2016]循环之美 【数论 + 莫比乌斯反演 + 杜教筛】

    题目链接 BZOJ 题解 orz 此题太优美了 我们令\(\frac{x}{y}\)为最简分数,则\(x \perp y\)即,\(gcd(x,y) = 1\) 先不管\(k\)进制,我们知道\(10 ...

  7. BZOJ4652: [Noi2016]循环之美(莫比乌斯反演,杜教筛)

    Description 牛牛是一个热爱算法设计的高中生.在他设计的算法中,常常会使用带小数的数进行计算.牛牛认为,如果在 k  进制下,一个数的小数部分是纯循环的,那么它就是美的.现在,牛牛想知道:对 ...

  8. 并不对劲的bzoj4652:loj2085:uoj221:p1587:[NOI2016]循环之美

    题目大意 对于已知的十进制数\(n\)和\(m\),在\(k\)进制下,有多少个数值上互不相等的纯循环小数,可以用\(x/y\)表示,其中 \(1\leq x\leq n,1\leq y\leq m\ ...

  9. luogu P1587 [NOI2016]循环之美

    传送门 首先要知道什么样的数才是"纯循环数".打表可以发现,这样的数当且仅当分母和\(k\)互质,这是因为,首先考虑除法过程,每次先给当前余数\(*k\),然后对分母做带余除法,那 ...

随机推荐

  1. ETCD快速入门-01 ETCD概述

    1.ETCD概述 1.1 ETCD概述     etcd是一个高可用的分布式的键值对存储系统,常用做配置共享和服务发现.由CoreOS公司发起的一个开源项目,受到ZooKeeper与doozer启发而 ...

  2. 笃情开源:我和 Apache DolphinScheduler 社区的故事

    背景 本文的主人翁是 2 次飞机参会现场交流,四天研究就把 DolphinScheduler 用上生产的来自车联网行业的大数据 boy - 黄立同学.怎么样,听起来是不是有点 crazy?下面就来看看 ...

  3. React报错之Functions are not valid as a React child

    正文从这开始~ 总览 产生"Functions are not valid as a React child. This may happen if you return a Compone ...

  4. Docker 07 部署Tomcat

    参考源 https://www.bilibili.com/video/BV1og4y1q7M4?spm_id_from=333.999.0.0 https://www.bilibili.com/vid ...

  5. MyBatis 04 实战

    增删改查实现 在实际使用中,MyBatis 的使用遵从一定的规范. 常用的增删改查的 MyBatis 实现如下: Mapper.xml <?xml version="1.0" ...

  6. Ansible部署MySQL编译安装

    环境: 系统:centos7 x3 master:192.168.220.133 slave1:192.168.220.136 slave2:192.168.220.137 前期准备: slave1( ...

  7. Python自学教程1-安装pycharm和执行环境

    Python虽然简单,但是很多没有接触过的学起来还是比较困难的.因此很多人会报班去学,我觉得不需要花那个钱,只要方向正确,加上核心知识点的提炼,自学一个月左右就能上手. 我尝试写下这个自学教程,只讨论 ...

  8. C++一些新的特性的理解(二)

    1 C++11多线程thread 重点: join和detach的使用场景 thread构造函数参数 绑定c函数 绑定类函数 线程封装基础类 互斥锁mutex condition notify.wai ...

  9. Qt Q_OBJECT编译问题

    编译问题 添加Q_OBJECT后需要qmake 多重继承 添加了Q_ENUM之类的宏,就需要Q_OBJECT 添加了Q_OBJECT,就需要类继承自QObject 如果有多重继承关系,QObject一 ...

  10. alter role 导致的数据库无法登录问题

    ALTER ROLE  用于更改一个数据库角色.只要改角色后续开始一个新会话,指定的值将会成为该会话的默认值,并且会覆盖 kingbase.conf中存在的值或者从命令行收到的值. 显性的更改角色的一 ...