题目链接:https://vjudge.net/problem/POJ-1284

题意:给定奇素数p,求x的个数,x为满足{(xi mod p)|1<=i<=p-1}={1,2,...,p-1}。

思路:题目的实质就是问p有多少原根。

  下面是百度对原根的解释:
    设m是正整数,a是整数,若a模m的阶等于φ(m),则称a为模m的一个原根。(其中φ(m)表示m的欧拉函数)
    假设一个数g是P的原根,那么g^i mod P的结果两两不同,且有 1<g<P, 0<i<P,归根到底就是g^(P-1) = 1 (mod P)当且仅当指数为P-1的时候成立.(这里P是素数).
    简单来说,g^i mod p ≠ g^j mod p (p为素数)//这句话就是满足的条件。
    其中i≠j且i, j介于1至(p-1)之间
    这个题目就是将原根的定义解释了一遍。
  
  有两点重要的原根性质
    1. 模m有原根的充要条件是m= 1,2,4,p,2p,p^n,其中p是奇质数,n是任意正整数。
    2. 当模m有原根时,它有φ(φ(m))个原根。

  某大牛的证明(没看懂...QAQ):

    {xi%p | 1 <= i <= p - 1} = {1,2,...,p-1} 等价于 {xi%(p-1) | 1 <= i <= p - 1} = {0,1,2,...,p-2},即为(p-1)的完全剩余系  

    若x,x2...x(p-1)是(p-1)的完全剩余系,

    根据定理,可以推出若gcd(x, p-1) = 1时, (1,x,...,x(p-2))也是(p-1)的完全剩余系

    因为若xi != xj (mod p-1),那么x*xi != x*xj (mod p-1),与条件m矛盾,所以 xi = xj (mod p-1),

    由此可以确定答案为eu(p-1)。

  知道答案是eu(p-1),代码就很好实现了,筛法打表65525以内的数的欧拉函数即可。

AC代码:

#include<cstdio>
using namespace std; int eu[],p; void eular(){
for(int i=;i<=;++i)
if(!eu[i])
for(int j=i;j<=;j+=i){
if(!eu[j]) eu[j]=j;
eu[j]=eu[j]/i*(i-);
}
} int main(){
eular();
while(~scanf("%d",&p)){
printf("%d\n",eu[p-]);
}
return ;
}

poj1284(欧拉函数+原根)的更多相关文章

  1. poj1284:欧拉函数+原根

    何为原根?由费马小定理可知 如果a于p互质 则有a^(p-1)≡1(mod p)对于任意的a是不是一定要到p-1次幂才会出现上述情况呢?显然不是,当第一次出现a^k≡1(mod p)时, 记为ep(a ...

  2. POJ 1284 Primitive Roots (欧拉函数+原根)

    <题目链接> 题目大意: 满足{ ( $x^{i}$ mod p) | 1 <=$i$ <= p-1 } == { 1, …, p-1 }的x称为模p的原根.给出p,求原根个数 ...

  3. POJ1284 Primitive Roots [欧拉函数,原根]

    题目传送门 Primitive Roots Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5434   Accepted:  ...

  4. poj1284 && caioj 1159 欧拉函数1:原根

    这道题不知道这个定理很难做出来. 除非暴力找规律. 我原本找的时候出了问题 暴力找出的从13及以上的答案就有问题了 因为13的12次方会溢出 那么该怎么做? 快速幂派上用场. 把前几个素数的答案找出来 ...

  5. (Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))

    /* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...

  6. 数学之欧拉函数 &几道poj欧拉题

    欧拉函数总结+证明 欧拉函数总结2 POJ 1284 原根 #include<iostream> #include<cstdio> #include<cstring> ...

  7. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  8. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  9. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

随机推荐

  1. 【NOIP2017提高A组集训10.21】Fantasy

    题目 Y sera 陷入了沉睡,幻境中它梦到一个长度为N 的序列{Ai}. 对于这个序列的每一个子串,定义其幻境值为这个子串的和,现在Y sera 希望选择K 个不同的子串并使得这K 个子串的幻境值之 ...

  2. youtube 上 us的站点是有免费的电影。

    us站点有免费: 菲力宾 跟日本的没有免费的 (PHP是菲力宾币)

  3. 21. ClustrixDB 识别平台限制

    本节描述集群性能上潜在的限制平台因素,如何度量集群是否接近或超过这些限制,以及纠正这些条件的可用选项.“平台因素”指的是硬件资源,如CPU.内存.磁盘和网络I/O子系统.有关潜在的软件相关因素,请参见 ...

  4. k8s测试容器test-for-k8s.yml

    生成容器 vim test-for-k8s.yml apiVersion: v1 kind: Pod metadata: name: busybox-curl labels: ccb: busybox ...

  5. QT:设置布局边缘

    QHBoxLayout * horizontalLayout = new QHBoxLayout; //setContentsMargins(int left, int top, int right, ...

  6. 试用saucelabs进行浏览器兼容性测试

    Hi,all 跟大家分享下saucelabs,一个云测试平台,支持PC和手机(自带的)浏览器的兼容性测试,并且支持selenium/appium的自动化测试,不过是收费的,价格还挺贵,但是人工的测试是 ...

  7. Java内存模型之可见性问题

    本博客系列是学习并发编程过程中的记录总结.由于文章比较多,写的时间也比较散,所以我整理了个目录贴(传送门),方便查阅. 并发编程系列博客传送门 前言 之前的文章中讲到,JMM是内存模型规范在Java语 ...

  8. C++入门经典-例6.9-通过指针变量获取数组中的元素

    1:通过指针引用数组,需要先声明一个数组,再声明一个指针. int a[10]; int *p; 然后通过&运算符获取数组中元素的地址,再将地址值赋给指针变量. p=&a[0]; 代码 ...

  9. Uva 101 -- the block problem

    Uva 101 the block problem 题目大意: 输入n,得到编号为0~n-1的木块,分别摆放在顺序排列编号为0~n-1的位置.现对这些木块进行操作,操作分为四种. 1.move a o ...

  10. 查看Linux基本系统信息

    #! /bin/bash #The scripts will return the system infomation #return hostname and version infomation ...