[HAOI2018]苹果树题解
大意:不解释
思路:
首先方案数共有n!种,第1个点只有1种选择,第2个点2种选择,生成2个选择的同时消耗一个,第3个点则有3种选择,依次类推共有n!种方案,由于最后答案*n!,故输出的实际上是每种方案的总和。
由于枚举方案是不可行的,考虑枚举边,计算每一个点连向父亲的边的贡献,容易知道贡献为siz*(n-siz),siz为子树大小。所以枚举点与siz即可。再考虑组成子树的形态,与子树外的形态。设当前枚举到i号点,子树大小为siz,则子树内不考虑编号有siz!种形态,考虑编号则有C(n-i,siz-1)种编号组合,则子树内共有siz!*C(n-i,siz-1)种方案;考虑子树外:由于已有i个点,这i个点可以有i!种方案,从第i+siz-1点开始由于以i为根的子树siz已确定,故这个点不能插入到以i为根的子树内,所以只有i-1种选择,这一部分贡献为(i-1)*(i)*(i+1)*……*(n-siz-1),与前面的总和化简得i*(i-1)*(n-siz-1)!。则当前枚举的点i与siz对答案的贡献为siz*(n-siz)*i*(i-1)*(n-siz-1)!*C(n-i,siz-1)*siz!。预处理出组合和阶乘枚举点i和siz统计即可。时间复杂度O(n^2);
#include <iostream>
#include <cstdio>
#include <memory.h>
#define r(x) x=read()
#define MAXX 2005
#define MAX(a,b) (a>b?a:b)
#define MIN(a,b) (a<b?a:b)
using namespace std;
typedef long long ll;
ll read()
{
char ch=;ll w=,ff=;
while(ch<''||ch>''){if(ch=='-')ff=-;ch=getchar();}
while(ch>=''&&ch<=''){w=w*+ch-'';ch=getchar();}
return ff*w;
}
ll P,n,fac[MAXX][MAXX],jie[MAXX],ans;
int main()
{
jie[]=1ll;
r(n),r(P);
for(int i=;i<=n;++i)
for(int j=;j<=i;++j)
fac[i][j]=(j==?:(fac[i-][j-]+fac[i-][j])%P);
for(int i=;i<=;++i) jie[i]=jie[i-]*i*1ll%P;
for(int i=;i<=n;++i)
for(int sz=;sz<=n-i+;++sz)
ans=(ans+(sz*1ll*(n-sz)*1ll%P*jie[sz]%P*jie[n-sz-]%P*i*(i-)%P*fac[n-i][sz-])%P)%P;
printf("%lld",ans%P);
return ;
}
[HAOI2018]苹果树题解的更多相关文章
- 【BZOJ5305】[HAOI2018]苹果树(组合计数)
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...
- [洛谷P4492] [HAOI2018]苹果树
洛谷题目链接:[HAOI2018]苹果树 题目背景 HAOI2018 Round2 第一题 题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C ...
- [HAOI2018]苹果树(组合数学,计数)
[HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到 ...
- 题解 洛谷 P4492 【[HAOI2018]苹果树】
考虑生成一颗二叉树的过程,加入第一个节点方案数为\(1\),加入第二个节点方案数为\(2\),加入第三个节点方案数为\(3\),发现生成一颗\(n\)个节点的二叉树的方案数为\(n!\). 所以题目中 ...
- HAOI2018 简要题解
这套题是 dy, wearry 出的.学长好强啊,可惜都 \(wc\) 退役了.. 话说 wearry 真的是一个计数神仙..就没看到他计不出来的题...每次考他模拟赛总有一两道毒瘤计数TAT 上午的 ...
- [BZOJ5305][HAOI2018]苹果树 组合数学
链接 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, ...
- HAOI2018苹果树
题解 首先所有生成树的情况树是\(n!\)的,因为第一次有1中方法,第二次有两种放法,以此类推... 然后我们发现距离这种东西可以直接枚举每条边算贡献. 于是我们枚举了一个点\(i\),又枚举了这个点 ...
- [HAOI2018]苹果树
嘟嘟嘟 这种计数大题就留给南方的计数神仙们做吧-- 刚开始我一直想枚举点,考虑新加一个点在根节点的左右子树,以及左右子树大小怎么分配,但是这样太难计算新的点带来的贡献了. 后来lba又提示我枚举边,考 ...
- BZOJ5305 [Haoi2018]苹果树 【组合数学】
题目链接 BZOJ5305 题解 妙啊 要求的是所有可能的树形的所有点对距离和 直接考虑点的贡献肯定想不出,这样的所有点对距离问题通常转化为边的贡献 考虑一条边会产生多少贡献 我们枚举\(i\)节点的 ...
随机推荐
- 需求-java web 能够实现整个文件夹的上传下载吗?
我们平时经常做的是上传文件,上传文件夹与上传文件类似,但也有一些不同之处,这次做了上传文件夹就记录下以备后用. 这次项目的需求: 支持大文件的上传和续传,要求续传支持所有浏览器,包括ie6,ie7,i ...
- R_Studio(学生成绩)数据相关性分析
对“Gary.csv”中的成绩数据进行统计量分析 用cor函数来计算相关性,method默认参数是用pearson:并且遇到缺失值,use默认参数everything,结果会是NA 相关性分析 当值r ...
- js函数收集
常见js函数收集: 转自:http://www.qdfuns.com/notes/36030/2eb2d45cccd4e62020b0a6f0586390af.html //运动框架 function ...
- Uva 101 -- the block problem
Uva 101 the block problem 题目大意: 输入n,得到编号为0~n-1的木块,分别摆放在顺序排列编号为0~n-1的位置.现对这些木块进行操作,操作分为四种. 1.move a o ...
- DeepFaceLab参数详解之Batch-Size的使用和取值!
Batch-Size简称BS. 这是一个非常常见的参数,所有模型都具备的一个参数. 这其实是深度学习中的一个基础概念.要说理论可以说出一大堆,大家可以先简单的理解为一次处理的图片张数.为了防止吓跑小白 ...
- Dark 类与对象
1 类的声明 使用class声明一个类 使用new 创建一个对象,new可省略 dark文件名和声明的类名可以不一样,与java不同 void main() { var function = Pers ...
- 精简版 Selenium PageFactory, Annotation 实例
精简版 Selenium PageFactory, Annotation 实例. 先是类: HomePage package com.test;import org.openqa.selenium. ...
- leetcode 17电话号码的字母组合
与子集70?类似,子集每次两个分支,本题每次k个分支,子集是第一次不push第二次push元素,本题是每次都push元素,因此,本题答案的长度都为k,子集题目为各种组合: /** res,level, ...
- 函数参数<二>
1. 缺省参数 调用函数时,缺省参数的值如果没有传入,则被认为是默认值.下例会打印默认的age,如果age没有被传入: def printinfo( name, age = 35 ): # 打印任何传 ...
- 函数参数<一>
<1> 定义带有参数的函数 示例如下: def add2num(a, b): c = a+b print (c) <2> 调用带有参数的函数 以调用上面的add2num(a, ...