【Spark机器学习速成宝典】模型篇05决策树【Decision Tree】(Python版)
目录
决策树原理
决策树代码(Spark Python)
决策树原理 |
详见博文:http://www.cnblogs.com/itmorn/p/7918797.html
决策树代码(Spark Python) |
代码里数据:https://pan.baidu.com/s/1jHWKG4I 密码:acq1
# -*-coding=utf-8 -*-
from pyspark import SparkConf, SparkContext
sc = SparkContext('local') from pyspark.mllib.tree import DecisionTree, DecisionTreeModel
from pyspark.mllib.util import MLUtils # Load and parse the data file into an RDD of LabeledPoint.
data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt')
'''
每一行使用以下格式表示一个标记的稀疏特征向量
label index1:value1 index2:value2 ... tempFile.write(b"+1 1:1.0 3:2.0 5:3.0\\n-1\\n-1 2:4.0 4:5.0 6:6.0")
>>> tempFile.flush()
>>> examples = MLUtils.loadLibSVMFile(sc, tempFile.name).collect()
>>> tempFile.close()
>>> examples[0]
LabeledPoint(1.0, (6,[0,2,4],[1.0,2.0,3.0]))
>>> examples[1]
LabeledPoint(-1.0, (6,[],[]))
>>> examples[2]
LabeledPoint(-1.0, (6,[1,3,5],[4.0,5.0,6.0]))
'''
# Split the data into training and test sets (30% held out for testing) 分割数据集,留30%作为测试集
(trainingData, testData) = data.randomSplit([0.7, 0.3]) # Train a DecisionTree model. 训练决策树模型
# Empty categoricalFeaturesInfo indicates all features are continuous. 空的categoricalFeaturesInfo意味着所有的特征都是连续的
model = DecisionTree.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={},
impurity='gini', maxDepth=5, maxBins=32) # Evaluate model on test instances and compute test error
predictions = model.predict(testData.map(lambda x: x.features))
labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)
testErr = labelsAndPredictions.filter(
lambda lp: lp[0] != lp[1]).count() / float(testData.count())
print('Test Error = ' + str(testErr)) #Test Error = 0.0294117647059
print('Learned classification tree model:')
print(model.toDebugString())
'''
DecisionTreeModel classifier of depth 2 with 5 nodes
If (feature 406 <= 72.0)
If (feature 100 <= 165.0)
Predict: 0.0
Else (feature 100 > 165.0)
Predict: 1.0
Else (feature 406 > 72.0)
Predict: 1.0
'''
# Save and load model 保存和加载模型
model.save(sc, "target/tmp/myDecisionTreeClassificationModel")
sameModel = DecisionTreeModel.load(sc, "target/tmp/myDecisionTreeClassificationModel")
print sameModel.predict(data.collect()[0].features) #0.0
【Spark机器学习速成宝典】模型篇05决策树【Decision Tree】(Python版)的更多相关文章
- 【Spark机器学习速成宝典】基础篇04数据类型(Python版)
目录 Vector LabeledPoint Matrix 使用C4.5算法生成决策树 使用CART算法生成决策树 预剪枝和后剪枝 应用:遇到连续与缺失值怎么办? 多变量决策树 Python代码(sk ...
- 【Spark机器学习速成宝典】模型篇07梯度提升树【Gradient-Boosted Trees】(Python版)
目录 梯度提升树原理 梯度提升树代码(Spark Python) 梯度提升树原理 待续... 返回目录 梯度提升树代码(Spark Python) 代码里数据:https://pan.baidu.co ...
- 【Spark机器学习速成宝典】模型篇06随机森林【Random Forests】(Python版)
目录 随机森林原理 随机森林代码(Spark Python) 随机森林原理 参考:http://www.cnblogs.com/itmorn/p/8269334.html 返回目录 随机森林代码(Sp ...
- 【Spark机器学习速成宝典】模型篇08保序回归【Isotonic Regression】(Python版)
目录 保序回归原理 保序回归代码(Spark Python) 保序回归原理 待续... 返回目录 保序回归代码(Spark Python) 代码里数据:https://pan.baidu.com/s/ ...
- 【Spark机器学习速成宝典】模型篇04朴素贝叶斯【Naive Bayes】(Python版)
目录 朴素贝叶斯原理 朴素贝叶斯代码(Spark Python) 朴素贝叶斯原理 详见博文:http://www.cnblogs.com/itmorn/p/7905975.html 返回目录 朴素贝叶 ...
- 【Spark机器学习速成宝典】模型篇03线性回归【LR】(Python版)
目录 线性回归原理 线性回归代码(Spark Python) 线性回归原理 详见博文:http://www.cnblogs.com/itmorn/p/7873083.html 返回目录 线性回归代码( ...
- 【Spark机器学习速成宝典】模型篇02逻辑斯谛回归【Logistic回归】(Python版)
目录 Logistic回归原理 Logistic回归代码(Spark Python) Logistic回归原理 详见博文:http://www.cnblogs.com/itmorn/p/7890468 ...
- 【Spark机器学习速成宝典】模型篇01支持向量机【SVM】(Python版)
目录 支持向量机原理 支持向量机代码(Spark Python) 支持向量机原理 详见博文:http://www.cnblogs.com/itmorn/p/8011587.html 返回目录 支持向量 ...
- 【Spark机器学习速成宝典】模型篇08支持向量机【SVM】(Python版)
目录 什么是支持向量机(SVM) 线性可分数据集的分类 线性可分数据集的分类(对偶形式) 线性近似可分数据集的分类 线性近似可分数据集的分类(对偶形式) 非线性数据集的分类 SMO算法 合页损失函数 ...
随机推荐
- MongoDB v4.0 命令
MongoDB v4.0 命令 官方文档 > 点这里 < 操作系统库 #操作管理员库 use admin #鉴权 db.auth("root","admin& ...
- 104、验证Swarm数据持久性 (Swarm11)
参考https://www.cnblogs.com/CloudMan6/p/8016994.html 上一节我们成功将 nfs 的volume挂载到 Service上,本节验证 Failover时 ...
- vue路由守卫触发顺序
不同组件之间的路由跳转流程图 导航被触发(A–>B) 调用A组件内路由守卫beforeRouteLeave(to,from,next) 调用全局路由前置守卫router.beforeEach(t ...
- 入门&常量&变量
位:二进制中,每个0或1就是一个位,叫做bit(比特) 字节:计算机最小是存储单元(byte或B) 8bit = 1B 常用cmd命令: 启动: Win+R,输入cmd回车切换盘符 盘符名称:进入文件 ...
- Java高并发程序设计学习笔记(一):并行简介以及重要概念
转自:https://blog.csdn.net/dataiyangu/article/details/86211544#_28 文章目录为什么需要并行?反对意见大势所趋几个重要的概念同步(synch ...
- CentOS6.5增加挂载点容量
一.背景:因为公司虚拟机 (/) 目录容量过小,导致一些任务不能正常执行,需要给虚拟机扩容 二.操作: 初始磁盘情况: 1.使用 df 命令查看磁盘与目录的容量: [root@shaonian ~]# ...
- 12、rpm
1.什么是rpm 由红帽开发用于软件包的安装 升级 卸载 查询 2.rpm包是什么样? 组成部分是什么样的? zip-3.0-11.el7.x86_64.rpm #el7 zip-3.0-1. el6 ...
- 会了docker你又多了一个谈资(上)
相信有到现在为止还是有很多同学只是听说过docker,但还不了解docker.也很想学习,但是又不知道从何入手,工作中又接触不到,而自己又懒得去翻阅各种学习资料,那么,读完本文,我保证,docker的 ...
- 搭建CentOs7的WebServer
CentOs7,在安装的时候,自己可以定义一些东西,包括硬盘分区,服务器角色等. 这一些就搭了一个BasicWebServer,这样的话,里面的很多勾选,包括Java,Perl,Python,php等 ...
- JULY-Record-update
2019/07/26~2019/07/29,关于学习的一些记录 神经网络和深度学习neural networks and deep-learning-中文_ALL(1) 张景,逻辑派,组织派,行为主义 ...