目录

  决策树原理

  决策树代码(Spark Python)


决策树原理

  详见博文:http://www.cnblogs.com/itmorn/p/7918797.html

返回目录

决策树代码(Spark Python)

  

  代码里数据:https://pan.baidu.com/s/1jHWKG4I 密码:acq1

# -*-coding=utf-8 -*-
from pyspark import SparkConf, SparkContext
sc = SparkContext('local') from pyspark.mllib.tree import DecisionTree, DecisionTreeModel
from pyspark.mllib.util import MLUtils # Load and parse the data file into an RDD of LabeledPoint.
data = MLUtils.loadLibSVMFile(sc, 'data/mllib/sample_libsvm_data.txt')
'''
每一行使用以下格式表示一个标记的稀疏特征向量
label index1:value1 index2:value2 ... tempFile.write(b"+1 1:1.0 3:2.0 5:3.0\\n-1\\n-1 2:4.0 4:5.0 6:6.0")
>>> tempFile.flush()
>>> examples = MLUtils.loadLibSVMFile(sc, tempFile.name).collect()
>>> tempFile.close()
>>> examples[0]
LabeledPoint(1.0, (6,[0,2,4],[1.0,2.0,3.0]))
>>> examples[1]
LabeledPoint(-1.0, (6,[],[]))
>>> examples[2]
LabeledPoint(-1.0, (6,[1,3,5],[4.0,5.0,6.0]))
'''
# Split the data into training and test sets (30% held out for testing) 分割数据集,留30%作为测试集
(trainingData, testData) = data.randomSplit([0.7, 0.3]) # Train a DecisionTree model. 训练决策树模型
# Empty categoricalFeaturesInfo indicates all features are continuous. 空的categoricalFeaturesInfo意味着所有的特征都是连续的
model = DecisionTree.trainClassifier(trainingData, numClasses=2, categoricalFeaturesInfo={},
impurity='gini', maxDepth=5, maxBins=32) # Evaluate model on test instances and compute test error
predictions = model.predict(testData.map(lambda x: x.features))
labelsAndPredictions = testData.map(lambda lp: lp.label).zip(predictions)
testErr = labelsAndPredictions.filter(
lambda lp: lp[0] != lp[1]).count() / float(testData.count())
print('Test Error = ' + str(testErr)) #Test Error = 0.0294117647059
print('Learned classification tree model:')
print(model.toDebugString())
'''
DecisionTreeModel classifier of depth 2 with 5 nodes
If (feature 406 <= 72.0)
If (feature 100 <= 165.0)
Predict: 0.0
Else (feature 100 > 165.0)
Predict: 1.0
Else (feature 406 > 72.0)
Predict: 1.0
'''
# Save and load model 保存和加载模型
model.save(sc, "target/tmp/myDecisionTreeClassificationModel")
sameModel = DecisionTreeModel.load(sc, "target/tmp/myDecisionTreeClassificationModel")
print sameModel.predict(data.collect()[0].features) #0.0

返回目录

【Spark机器学习速成宝典】模型篇05决策树【Decision Tree】(Python版)的更多相关文章

  1. 【Spark机器学习速成宝典】基础篇04数据类型(Python版)

    目录 Vector LabeledPoint Matrix 使用C4.5算法生成决策树 使用CART算法生成决策树 预剪枝和后剪枝 应用:遇到连续与缺失值怎么办? 多变量决策树 Python代码(sk ...

  2. 【Spark机器学习速成宝典】模型篇07梯度提升树【Gradient-Boosted Trees】(Python版)

    目录 梯度提升树原理 梯度提升树代码(Spark Python) 梯度提升树原理 待续... 返回目录 梯度提升树代码(Spark Python) 代码里数据:https://pan.baidu.co ...

  3. 【Spark机器学习速成宝典】模型篇06随机森林【Random Forests】(Python版)

    目录 随机森林原理 随机森林代码(Spark Python) 随机森林原理 参考:http://www.cnblogs.com/itmorn/p/8269334.html 返回目录 随机森林代码(Sp ...

  4. 【Spark机器学习速成宝典】模型篇08保序回归【Isotonic Regression】(Python版)

    目录 保序回归原理 保序回归代码(Spark Python) 保序回归原理 待续... 返回目录 保序回归代码(Spark Python) 代码里数据:https://pan.baidu.com/s/ ...

  5. 【Spark机器学习速成宝典】模型篇04朴素贝叶斯【Naive Bayes】(Python版)

    目录 朴素贝叶斯原理 朴素贝叶斯代码(Spark Python) 朴素贝叶斯原理 详见博文:http://www.cnblogs.com/itmorn/p/7905975.html 返回目录 朴素贝叶 ...

  6. 【Spark机器学习速成宝典】模型篇03线性回归【LR】(Python版)

    目录 线性回归原理 线性回归代码(Spark Python) 线性回归原理 详见博文:http://www.cnblogs.com/itmorn/p/7873083.html 返回目录 线性回归代码( ...

  7. 【Spark机器学习速成宝典】模型篇02逻辑斯谛回归【Logistic回归】(Python版)

    目录 Logistic回归原理 Logistic回归代码(Spark Python) Logistic回归原理 详见博文:http://www.cnblogs.com/itmorn/p/7890468 ...

  8. 【Spark机器学习速成宝典】模型篇01支持向量机【SVM】(Python版)

    目录 支持向量机原理 支持向量机代码(Spark Python) 支持向量机原理 详见博文:http://www.cnblogs.com/itmorn/p/8011587.html 返回目录 支持向量 ...

  9. 【Spark机器学习速成宝典】模型篇08支持向量机【SVM】(Python版)

    目录 什么是支持向量机(SVM) 线性可分数据集的分类 线性可分数据集的分类(对偶形式) 线性近似可分数据集的分类 线性近似可分数据集的分类(对偶形式) 非线性数据集的分类 SMO算法 合页损失函数 ...

随机推荐

  1. golang(5):struct & 链表 & 二叉树 & 接口

    struct : 结构体 // 1. 用来自定义复杂数据结构 // 2. struct里面可以包含多个字段(属性) // 3. struct类型可以定义方法,注意和函数的区分 // 4. struct ...

  2. git 常用命令语句(个人笔记)

    切换账户 git config user.name xxxxx     查看用户名  ex: git config user.name tongjiaojiao   git config user.e ...

  3. 10 Scrapy框架持久化存储

    一.基于终端指令的持久化存储 保证parse方法中有可迭代类型对象(通常为列表or字典)的返回,该返回值可以通过终端指令的形式写入指定格式的文件中进行持久化操作. 执行输出指定格式进行存储:将爬取到的 ...

  4. 多Y轴,下拉框渲染,相同类型不同数据

    放上json文件: { "2017年3月": { "outKou": "5525.86", "inKou": " ...

  5. Linux下make cmake 编译等啥意思?

    写程序大体步骤为: 1.用编辑器编写源代码,如.c文件. 2.用编译器编译代码生成目标文件,如.o. 3.用链接器连接目标代码生成可执行文件,如.exe. 但如果源文件太多,一个一个编译时就会特别麻烦 ...

  6. python 安装时,为何pip install不是内部或者外部命令错误解决办法

    新安装的python 环境,第一次pip  install 却报不是内部或者外部命令错误 首先检查一下环境变量,可能时你没有设置环境变量 再说一遍,安装python环境时,记得出了python.exe ...

  7. java并发编程:锁的相关概念介绍

    理解同步,最好先把java中锁相关的概念弄清楚,有助于我们更好的去理解.学习同步.java语言中与锁有关的几个概念主要是:可重入锁.读写锁.可中断锁.公平锁 一.可重入锁 synchronized和R ...

  8. maven 学习之路一

    一.mave介绍: maven :我的理解就是一个代码构建管理的一个工具.类似的工具有gradle,ant等. 官方理解:Apache Maven is a software project mana ...

  9. Spring中配置Hibernate事务管理

    <!-- transationManager --> <bean id="transactionManager" class="org.springfr ...

  10. 【hdu 6071】Lazy Running

    菜鸡永远都在做着变聚的梦. 题意 有 \(4\) 个点连成一个环,连接顺序依次为 \(1-2-3-4-1\).相邻两个点之间有个距离 \(d_{i,i+1}\)(特别地,当 \(i=4\) 时为 \( ...