题目大意

给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小。其中\(C_i\)为序列中的项的值,\(M\)为常数。$ j,k $ 表示在原序列中连续的某一段的起始位置和结束位置。

解题思路

考虑到\(n\)的范围巨大,肯定不能用\(O(n^2)\)的暴力DP,而贪心又显然有问题,所以我们只能尝试对DP优化。

我们设\(f[i]\)为前\(i\)项作为子问题的解,\(sum[i]\)为前\(i\)项的前缀和。那么,若从\(i\)转移到\(k\)优于从\(j\)转移到\(k\)(不妨令\(i > j\))就有:

\[f[i]+M+(sum[k]-sum[i])^2 < f[j]+M+(sum[k]-sum[j])^2
\]

化简,得

\[\frac{f[i]-f[j]+sum[i]^2-sum[j]^2}{2sum[i]-2sum[j]}<sum[k]
\]

到这里,做法就显然了,就是DP斜率优化。

接下来就在这道题的基础上大致分析一下什么是斜率优化。


我们不妨令\(Y[i]=f[i]-sum[i]^2,X[i]=2sum[i]\)。那么上面不等式的左边就变为了\(\frac{Y[i]-Y[j]}{X[i]-X[j]}\)。这个东西是不是很像斜率呢?\(X,Y\)可以看成点。我们不妨设现在从左至右有\(3\)个点\(i,j,k\),\(i,j\)斜率为\(l_1\),\(j,k\)斜率为\(l_2\)。接下来我们考虑\(l_1,l_2\)。

当\(l_2 \leqslant l_1\)时,若\(sum[k] \leqslant l_2 \leqslant l_1\),那么最优值不是\(j,k\);若\(l_2 < sum[k] \leqslant l_1\),那么\(k\)比\(j\)优;若\(l_2 \leqslant l_1 < sum[k]\),那么\(k\)在\(i,j,k\)中最优。所以不论如何,\(j\)都不会成为当前最优方案,我们不妨删掉\(j\)。

当\(l_1 < l2\)时,若\(sum[k] \leqslant l_1 < l_2\),那么最优值可能是\(i\);若\(l_1 < sum[k] \leqslant l_2\),那么\(j\)在\(i,j,k\)中最优;若\(l_1 < l_2 < sum[k]\),那么最优值可能为\(k\)。

进过如上分析,我们发现,我们只需要保留在图上逐个连线后样子为下凸的一些点。同时我们又发现,若从点\(i\)转移为当前最优,那么在图上看来这个点应该与斜率为\(sum[k]\)的直线“相切”。所以我们转移的时候只需要找在保留的点中,向前斜率小于\(sum[k]\),向后斜率大于\(sum[k]\)的点就可以了。

最后,这里sum[k]单调不减,所以找当前最优的转移可以优化;若遇到\(sum[k]\)不单调的情况,二分查找即可。

tip:推式子的时候不能忽略取等的情况。我就是因为\(Greater\)函数中漏了取等的情况,听取WA声一片……

补:后来发现实际上是可能不严格递增,导致判断的时候某个结果为\(0\)

参考程序

#include <bits/stdc++.h>
#define LL long long
using namespace std; LL N, M, a[ 500010 ], Sum[ 500010 ], F[ 500010 ];
LL L, R, Queue[ 500010 ]; LL sqr( LL x ) { return x * x; } bool Less( LL j, LL i, LL t ) {
return F[ i ] - F[ j ] + sqr( Sum[ i ] ) - sqr( Sum[ j ] ) < 2 * Sum[ t ] * ( Sum[ i ] - Sum[ j ] );
} bool Greater( LL k, LL j, LL i ) {
LL X2 = 2 * ( Sum[ i ] - Sum[ j ] );
LL Y2 = F[ i ] - F[ j ] + sqr( Sum[ i ] ) - sqr( Sum[ j ] );
LL X1 = 2 * ( Sum[ j ] - Sum[ k ] );
LL Y1 = F[ j ] - F[ k ] + sqr( Sum[ j ] ) - sqr( Sum[ k ] );
return X1 * Y2 <= X2 * Y1;
} int main() {
while( scanf( "%lld%lld", &N, &M ) == 2 ) {
memset( a, 0, sizeof( a ) );
memset( Sum, 0, sizeof( Sum ) );
memset( F, 0, sizeof( F ) );
memset( Queue, 0, sizeof( Queue ) );
L = R = 0;
for( LL i = 1; i <= N; ++i ) scanf( "%lld", &a[ i ] );
for( LL i = 1; i <= N; ++i ) Sum[ i ] = Sum[ i - 1 ] + a[ i ];
R = 1; Queue[ 0 ] = 0;
for( LL i = 1; i <= N; ++i ) {
while( L + 1 < R && Less( Queue[ L ], Queue[ L + 1 ], i ) )
++L;
F[ i ] = F[ Queue[ L ] ] + M + sqr( Sum[ i ] - Sum[ Queue[ L ] ] );
while( L + 1 < R && Greater( Queue[ R - 2 ], Queue[ R - 1 ], i ) )
--R;
Queue[ R++ ] = i;
}
printf( "%lld\n", F[ N ] );
}
return 0;
}

HDU 3507 [Print Article]DP斜率优化的更多相关文章

  1. HDU 3507 Print Article(斜率优化DP)

    题目链接 题意 : 一篇文章有n个单词,如果每行打印k个单词,那这行的花费是,问你怎么安排能够得到最小花费,输出最小花费. 思路 : 一开始想的简单了以为是背包,后来才知道是斜率优化DP,然后看了网上 ...

  2. HDU 3507 Print Article(斜率优化)

    显然的斜率优化模型 但是单调队列维护斜率单调性的时候出现了莫名的锅orz 代码 #include <cstdio> #include <algorithm> #include ...

  3. HDU 3507 Print Article(斜率优化推导)

    $dp$,斜率优化. 第一次做斜率优化的题目,看了一些题解,自己总结一下. 这题是说有$n$个数字,可以切成任意段,每一段的费用是这一段数字的和平方加上$M$.问最小费用是多少. 设$dp[i]$为$ ...

  4. hdu 3507 Print Article(斜率优化DP)

    题目链接:hdu 3507 Print Article 题意: 每个字有一个值,现在让你分成k段打印,每段打印需要消耗的值用那个公式计算,现在让你求最小值 题解: 设dp[i]表示前i个字符需要消耗的 ...

  5. HDU 3507 Print Article(DP+斜率优化)

     Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) ...

  6. DP(斜率优化):HDU 3507 Print Article

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...

  7. HDU 3507 - Print Article - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3507 Zero has an old printer that doesn't work well s ...

  8. HDU 3507 Print Article 斜率优化

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...

  9. 斜率优化板题 HDU 3507 Print Article

    题目大意:输出N个数字a[N],输出的时候可以连续的输出,每连续输出一串,它的费用是 "这串数字和的平方加上一个常数M".n<=500000 我们设dp[i]表示输出到i的时 ...

随机推荐

  1. Java中this与super的区别

    this与super关键字在java中构造函数中的应用: ** super()函数 ** super()函数在子类构造函数中调用父类的构造函数时使用,而且必须要在构造函数的第一行,例如: class ...

  2. vc_redist x64 或者x86下载地址

    https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads 微软的东西,果然还是人 ...

  3. 分层最短路(牛客第四场)-- free

    题意: 给你边权,起点和终点,有k次机会把某条路变为0,问你最短路是多长. 思路: 分层最短路模板题.题目有点坑(卡掉了SPFA,只能用dijkstra跑的算法). #include<iostr ...

  4. C++练习 | 单向链表类模板(包含类模板中静态变量初始化格式)

    #include <iostream> #include <string> using namespace std; template <class T> clas ...

  5. Hive 教程(七)-DML基础

    DML,Hive Data Manipulation Language,数据操作语言: 通俗理解就是数据库里与数据的操作,如增删改查,统计汇总等: Loading files into tables ...

  6. python基本数据类型零碎知识点

                                                                                                        ...

  7. python网络爬虫(3)python爬虫遇到的各种问题(python版本、进程等)

    import urllib2 源地址 在python3.3里面,用urllib.request代替urllib2 import urllib.request as urllib2 import coo ...

  8. 客户端相关知识学习(五)之什么是webView

    webview是什么?作用是什么?和浏览器有什么关系? Android系统中内置了一款高性能 webkit 内核浏览器,在 SDK 中封装为一个叫做 WebView 组件也就是说WebView是一个基 ...

  9. 同步(Synchronous)和异步(Asynchronous)方法的区别

    同步(Synchronous)和异步(Asynchronous)方法的区别 在讲之前,我们先来看<Computer Organization>中对于同步和异步的一个例子: 同步读写和异步读 ...

  10. 04 Python之while循环/格式化输出/运算符/编码

    1. while循环 while 条件: 循环体(break,continue) else: 循环体(break,continue) break:彻底干掉一个循环,直接跳出. continue:停止当 ...