BZOJ4650/UOJ219 [Noi2016]优秀的拆分
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
Description
Input
Output
Sample Input
aabbbb
cccccc
aabaabaabaa
bbaabaababaaba
Sample Output
5
4
7
explanation
我们用 S[i,j]S[i,j] 表示字符串 SS 第 ii 个字符到第 jj 个字符的子串(从 11 开始计数)。
第一组数据中,共有 33 个子串存在优秀的拆分:
S[1,4]=aabbS[1,4]=aabb,优秀的拆分为 A=aA=a,B=bB=b;
S[3,6]=bbbbS[3,6]=bbbb,优秀的拆分为 A=bA=b,B=bB=b;
S[1,6]=aabbbbS[1,6]=aabbbb,优秀的拆分为 A=aA=a,B=bbB=bb。
而剩下的子串不存在优秀的拆分,所以第一组数据的答案是 33。
第二组数据中,有两类,总共 44 个子串存在优秀的拆分:
对于子串 S[1,4]=S[2,5]=S[3,6]=ccccS[1,4]=S[2,5]=S[3,6]=cccc,它们优秀的拆分相同,均为 A=cA=c,B=cB=c,但由于这些子串位置不同,因此要计算 33 次;
对于子串 S[1,6]=ccccccS[1,6]=cccccc,它优秀的拆分有 22 种:A=cA=c,B=ccB=cc 和 A=ccA=cc,B=cB=c,它们是相同子串的不同拆分,也都要计入答案。
所以第二组数据的答案是 3+2=53+2=5。
第三组数据中,S[1,8]S[1,8] 和 S[4,11]S[4,11] 各有 22 种优秀的拆分,其中 S[1,8]S[1,8] 是问题描述中的例子,所以答案是 2+2=42+2=4。
第四组数据中,S[1,4]S[1,4],S[6,11]S[6,11],S[7,12]S[7,12],S[2,11]S[2,11],S[1,8]S[1,8] 各有 11 种优秀的拆分,S[3,14]S[3,14] 有 22 种优秀的拆分,所以答案是 5+2=75+2=7。
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
using namespace std;
typedef long long LL;
const int MAXN = 50011;
const int MOD = 30000007;
int n;
char ch[MAXN];
LL hash[MAXN],mo[MAXN],u[MAXN],v[MAXN],ans;
//u[i]记录i开头的AA的方案数,v[i]记录i结尾的AA的方案数,均为差分数组 inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline LL gethash(int l,int r){
LL now=hash[l]-hash[r]*mo[r-l];
now%=MOD; now+=MOD; now%=MOD;
return now;
} inline void work(){
int T=getint(); mo[0]=1; for(int i=1;i<=30000;i++) mo[i]=mo[i-1]*31,mo[i]%=MOD;
while(T--) {
scanf("%s",ch+1); n=strlen(ch+1); int l,r,mid,head,tail,last,pos;
memset(u,0,sizeof(u)); memset(v,0,sizeof(v));
hash[n+1]=0; for(int i=n;i>=1;i--) hash[i]=hash[i+1]*31+ch[i]-'a'+1,hash[i]%=MOD;
for(int L=1;L*2<=n;L++)//枚举一个A的长度,则AA长度为2*L
for(int i=L+L;i<=n;i+=L) { //和后面的块求lcp,和前面的块求lcs
if(ch[i]!=ch[i-L]) continue;
//lcs
l=1; r=L; last=i-L; pos=0;
while(l<=r) {
mid=(l+r)>>1;
if(gethash(last-mid+1,last+1)==gethash(i-mid+1,i+1)) l=mid+1,pos=mid;
else r=mid-1;
}
head=i-pos+1; //lcp
l=1; r=L; pos=0;
while(l<=r){
mid=(l+r)>>1;
if(gethash(last,last+mid)==gethash(i,i+mid)) l=mid+1,pos=mid;
else r=mid-1;
}
tail=i+pos-1; head=max(head+L-1,i);
tail=min(tail,i+L-1); if(head<=tail) {
u[head-L*2+1]++; u[tail+1-L*2+1]--;
v[head]++; v[tail+1]--;
}
} ans=0;
for(int i=1;i<=n;i++) u[i]+=u[i-1],v[i]+=v[i-1];
for(int i=1;i<n;i++) ans+=v[i]*u[i+1];
printf("%lld\n",ans);
}
} int main()
{
work();
return 0;
}
BZOJ4650/UOJ219 [Noi2016]优秀的拆分的更多相关文章
- BZOJ4650:[NOI2016]优秀的拆分——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4650 https://www.luogu.org/problemnew/show/P1117 如果 ...
- 【BZOJ4650】[NOI2016] 优秀的拆分(后缀数组)
点此看题面 大致题意: 定义将一个字符串拆成\(AABB\)的形式为优秀拆分,求一个字符串所有子串的优秀拆分个数. 后缀数组 这题可是一道后缀数组黑题啊. 其实看完题解这题还是挺简单的. 大致思路 显 ...
- UOJ219 NOI2016 优秀的拆分 二分、字符串哈希
传送门 题目可以转化为求\(AA\)的数量,设\(cnt1_x\)表示左端点为\(x\)的\(AA\)的数量,\(cnt2_x\)表示右端点为\(x\)的\(AA\)的数量,那么答案就是\(\sum ...
- 【BZOJ4650&UOJ219】优秀的拆分(二分,hash)
题意: 思路: 在实现时SA可以用hash+二分代替,会多一个log BZ上跑的飞快,但UOJ上extra卡出翔,已经放弃 不过转C或者写SA没准就过了 看来转C迫在眉睫 ; ..]of int64; ...
- [UOJ#219][BZOJ4650][Noi2016]优秀的拆分
[UOJ#219][BZOJ4650][Noi2016]优秀的拆分 试题描述 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 A 和 B 是任意非空字符串,则我们称该字符串的这种拆分是优秀 ...
- [NOI2016]优秀的拆分&&BZOJ2119股市的预测
[NOI2016]优秀的拆分 https://www.lydsy.com/JudgeOnline/problem.php?id=4650 题解 如果我们能够统计出一个数组a,一个数组b,a[i]表示以 ...
- luogu1117 [NOI2016]优秀的拆分
luogu1117 [NOI2016]优秀的拆分 https://www.luogu.org/problemnew/show/P1117 后缀数组我忘了. 此题哈希可解决95分(= =) 设\(l_i ...
- 【BZOJ4560】[NOI2016]优秀的拆分
[BZOJ4560][NOI2016]优秀的拆分 题面 bzoj 洛谷 题解 考虑一个形如\(AABB\)的串是由两个形如\(AA\)的串拼起来的 那么我们设 \(f[i]\):以位置\(i\)为结尾 ...
- [NOI2016]优秀的拆分(SA数组)
[NOI2016]优秀的拆分 题目描述 如果一个字符串可以被拆分为 \(AABB\) 的形式,其中 A和 B是任意非空字符串,则我们称该字符串的这种拆分是优秀的. 例如,对于字符串 \(aabaaba ...
随机推荐
- leetcode868
class Solution { public: int binaryGap(int N) { ; vector<int> V; while (N) { )//N&1==1,表示最 ...
- FatMouse' Trade(Hdu 1009)
Description FatMouse prepared M pounds of cat food, ready to trade with the cats guarding the wareho ...
- pyspider用PyQuery解析页面数据
示例说明: 本示例主要是PyQuery解析返回的response页面数据.response.doc解析页面数据是pyspider的主要用法,应该熟练掌握基本使用方法.其他返回类型示例见后续文章. py ...
- 自定义type
- Windchill 设计变更流程卡死查询方法
设计变更流程卡死查询方法 1. 导出设计变更表单查看填写了“需要”和“是”字眼的文本框 2.打开进程管理器显示流程卡死的地方,确定哪里出错导致没法执行下一步 3.打开设计变更流程图,里面可以查看有 ...
- js的两种查询方式 LHS and RHS
为了进一步理解,我们需要多介绍一点编译器的术语.编译器在编译过程的第二步中生成了代码,引擎执行它时,会通过查找变量 a 来判断它是否已声明过.查找的过程由作用域进行协助,但是引擎执行怎样的查找,会影响 ...
- 在Win7 64位电脑上安装Sql Server 2008 R2 Express
安装环境说明: 操作系统:Win7 64位 英文版 安装步骤: 1.准备安装文件 下载网址:https://www.microsoft.com/zh-CN/download/details.aspx? ...
- Python 网络爬虫 009 (编程) 通过正则表达式来获取一个网页中的所有的URL链接,并下载这些URL链接的源代码
通过 正则表达式 来获取一个网页中的所有的 URL链接,并下载这些 URL链接 的源代码 使用的系统:Windows 10 64位 Python 语言版本:Python 2.7.10 V 使用的编程 ...
- win32多线程(三) 死锁
任何时候当一段代码需要两个(或更多)资源时,都有潜在性的死锁. void SwapLists(List *list1, List *list2) { List *tmp_list; EnterCrit ...
- 浏览器访问www.meituan.com过程
“从浏览器输入 xxx 到跳转完成的过程发生了什么”,是一个常见的比较综合的面试题,以下是我查阅了一些资料后总结的,如有错误,还望批评指正.(以美团网为例) 1.在浏览器地址栏输入:meituan.c ...