题意:有n扇门,每扇门有一个值x,大于0代表x分钟后出去,小于0代表x分钟后回到原地,求出去的时间的期望

题解:假设出去的总时间为sum1,回来的总时间为sum2,出去的门个数为out,进来的门的个数为in,出去的期望为E

一次直接传送出去的时间期望为sum1/n,第一次不能直接传送出去但是后来传送出去的时间期望为(sum2+in*E)/n

则E=sum1/n+(sum2+in*E)/n,化简得E=(sum1+sum2)/out,特判inf,化成最简分式

#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pii pair<int,int> using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f; int main()
{
int t,res=;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
int sum=,out=;
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
if(x>)out++;
sum+=abs(x);
}
if(out==)
{
printf("Case %d: inf\n",++res);
continue;
}
int x=__gcd(sum,out);
sum/=x,out/=x;
printf("Case %d: %d/%d\n",++res,sum,out);
}
return ;
}
/******************** ********************/

LightOJ - 1027 数学期望的更多相关文章

  1. [BZOJ 3143][HNOI2013]游走(数学期望)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3143 分析: 易得如果知道了每条边经过的数学期望,那就可以贪心着按每条边的期望的大小赋 ...

  2. Codeforces Round #259 (Div. 2) C - Little Pony and Expected Maximum (数学期望)

    题目链接 题意 : 一个m面的骰子,掷n次,问得到最大值的期望. 思路 : 数学期望,离散时的公式是E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) p(xi)的是 ...

  3. 数学期望和概率DP题目泛做(为了对应AD的课件)

    题1: Uva 1636 Headshot 题目大意: 给出一个000111序列,注意实际上是环状的.问是0出现的概率大,还是当前是0,下一个还是0的概率大. 问题比较简单,注意比较大小: A/C & ...

  4. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  5. 【BZOJ2134】单位错选(数学期望,动态规划)

    [BZOJ2134]单位错选(数学期望,动态规划) 题面 BZOJ 题解 单独考虑相邻的两道题目的概率就好了 没了呀.. #include<iostream> #include<cs ...

  6. 【BZOJ1415】【NOI2005】聪聪和可可(动态规划,数学期望)

    [BZOJ1415][NOI2005]聪聪和可可(动态规划,数学期望) 题面 BZOJ 题解 先预处理出当可可在某个点,聪聪在某个点时 聪聪会往哪里走 然后记忆化搜索一下就好了 #include< ...

  7. 【Luogu1291】百事世界杯之旅(动态规划,数学期望)

    [Luogu1291]百事世界杯之旅(动态规划,数学期望) 题面 洛谷 题解 设\(f[i]\)表示已经集齐了\(i\)个名字的期望 现在有两种方法: 先说我自己的: \[f[i]=f[i-1]+1+ ...

  8. 【BZOJ4872】分手是祝愿(动态规划,数学期望)

    [BZOJ4872]分手是祝愿(动态规划,数学期望) 题面 BZOJ 题解 对于一个状态,如何求解当前的最短步数? 从大到小枚举,每次把最大的没有关掉的灯关掉 暴力枚举因数关就好 假设我们知道了当前至 ...

  9. 【BZOJ3143】游走(高斯消元,数学期望)

    [BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...

随机推荐

  1. 详解jquery插件中(function ( $, window, document, undefined )的作用。

    1.(function(window,undefined){})(window); Q:(function(window,undefined){})(window);中为什么要将window和unde ...

  2. Android Studio工程引用第三方so文件

    应用程序二进制接口(Application Binary Interface)定义了二进制文件(尤其是.so文件)如何运行在相应的系统平台上,从使用的指令集,内存对齐到可用的系统函数库.在Androi ...

  3. shuit模块

    shuit模块 #高级的 文件.文件夹.压缩包 处理模块 shutil.copyfileobj(fsrc, fdst[, length])将文件内容拷贝到另一个文件中,可以部分内容 def copyf ...

  4. C#类型基础(1)

    1.“运行时”要求每个类型最终都从 System.Object 类型派生.Object提供了Equals,GetHashCode,ToString,GetType公共方法,并提供MemberwiseC ...

  5. 算法题14 小Q歌单,牛客网,腾讯笔试题

    算法题14 小Q歌单,牛客网,腾讯笔试题 题目: 小Q有X首长度为A的不同的歌和Y首长度为B的不同的歌,现在小Q想用这些歌组成一个总长度正好为K的歌单,每首歌最多只能在歌单中出现一次,在不考虑歌单内歌 ...

  6. python并发编程之多进程2-(数据共享及进程池和回调函数)

    一.数据共享 1.进程间的通信应该尽量避免共享数据的方式 2.进程间的数据是独立的,可以借助队列或管道实现通信,二者都是基于消息传递的. 虽然进程间数据独立,但可以用过Manager实现数据共享,事实 ...

  7. VC引用动态库

    1. 程序所在目录 2. 进程当前目录 3. 系统目录(C:\WINDOWS\System32) 4. Windows目录(C:\WINDOWS) 5. PATH环境变量指向的目录

  8. python cookboo 文件与IO 函数

    写出文本数据 g = open('test.txt', 'rt', newline='',encoding = 'utf-8', errors='replace') t是windows平台特有的所谓t ...

  9. 016_笼统概述MapReduce执行流程结合wordcount程序

    数据传输<key,value>     File-->  <key,value>  -->map(key,value)  --> mapResult<k ...

  10. 前端之HTML基础

    一.初识HTML 1.web服务的本质 方式一:服务端 import socket def main(): sock = socket.socket(socket.AF_INET, socket.SO ...