如果一个序列中是否存在一段连续子序列中的每个元素在该子序列中都出现了至少两次,那么这个序列是无聊的,反正则不无聊。给你一个长度为n(n<=200000)的序列,判断这个序列是否无聊。

稀里糊涂AC的一道题。

如果一个序列不无聊,那么一定至少存在一个独一无二的元素。如果找到了该元素,那么只需分别判断该元素两侧的子序列是否无聊即可。找到一个独一无二的元素的期望时间复杂度为$O(n)$(n为当前序列长度),显然如果该独一无二的元素在中间的话,则复杂度$T(n)=2T(n/2)+O(n)=O(nlogn)$,但假如比较靠边的话,情况就有些尴尬了,最坏情况下复杂度为$O(n^2)$。解决方法是从两边向中间找,这样的话复杂度就成了$T(n)=max\{T(k)+T(n-k)+min(k,n-k)\}$,比较玄学,据说是$O(nlogn)$的,但我不会证明QAQ,而且不知道为啥一样的代码逻辑,很多都跑了100+ms,而我的却跑了2500+ms,勉强过掉...

 #include<bits/stdc++.h>

 using namespace std;
typedef long long ll;
const int N=2e5+;
int n,a[N],b[N],c[N],nn,pre[N],nxt[N],last[N]; void disc(int* a,int n) {
for(int i=; i<n; ++i)b[i]=a[i];
sort(b,b+n);
nn=unique(b,b+n)-b;
for(int i=; i<n; ++i)a[i]=lower_bound(b,b+nn,a[i])-b;
} int uni(int i,int l,int r) {return pre[i]<l&&nxt[i]>r;} int solve(int l,int r) {
if(l>=r)return ;
int mid=-;
for(int L=l,R=r; L<=R; ++L,--R) {
if(uni(L,l,r)) {mid=L; break;}
if(uni(R,l,r)) {mid=R; break;}
}
if(mid==-)return ;
return solve(l,mid-)&&solve(mid+,r);
} int main() {
int T;
for(scanf("%d",&T); T--;) {
scanf("%d",&n);
for(int i=; i<n; ++i)scanf("%d",&a[i]);
disc(a,n);
memset(last,-,sizeof last);
for(int i=; i<n; ++i) {
pre[i]=last[a[i]],last[a[i]]=i,nxt[i]=n;
if(~pre[i])nxt[pre[i]]=i;
}
puts(solve(,n-)?"non-boring":"boring");
}
return ;
}

UVA - 1608 Non-boring sequences (分治,中途相遇法)的更多相关文章

  1. uva 6757 Cup of Cowards(中途相遇法,貌似)

    uva 6757 Cup of CowardsCup of Cowards (CoC) is a role playing game that has 5 different characters (M ...

  2. UVa 1326 - Jurassic Remains(枚举子集+中途相遇法)

    训练指南p.59 #include <cstdio> #include <cstring> #include <cstdlib> #include <map& ...

  3. 紫书 例题8-3 UVa 1152(中途相遇法)

    这道题要逆向思维, 就是求出答案的一部分, 然后反过去去寻找答案存不存在. 其实很多其他题都用了这道题目的方法, 自己以前都没有发现, 这道题专门考这个方法.这个方法可以没有一直往下求, 可以省去很多 ...

  4. 紫书 习题 8-16 UVa 1618 (中途相遇法)

    暴力n的四次方, 然而可以用中途相遇法的思想, 分左边两个数和右边两个数来判断, 最后合起来判断. 一边是n平方logn, 合起来是n平方logn(枚举n平方, 二分logn) (1)两种比较方式是相 ...

  5. 【uva 1152】4 Values Whose Sum is Zero(算法效率--中途相遇法+Hash或STL库)

    题意:给定4个N元素几个A,B,C,D,要求分别从中选取一个元素a,b,c,d使得a+b+c+d=0.问有多少种选法.(N≤4000,D≤2^28) 解法:首先我们从最直接最暴力的方法开始思考:四重循 ...

  6. LA 2965 Jurassic Remains (中途相遇法)

    Jurassic Remains Paleontologists in Siberia have recently found a number of fragments of Jurassic pe ...

  7. HDU 5936 Difference 【中途相遇法】(2016年中国大学生程序设计竞赛(杭州))

    Difference Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  8. 【中途相遇法】【STL】BAPC2014 K Key to Knowledge (Codeforces GYM 100526)

    题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...

  9. 高效算法——J 中途相遇法,求和

    ---恢复内容开始--- J - 中途相遇法 Time Limit:9000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

  10. 【UVALive】2965 Jurassic Remains(中途相遇法)

    题目 传送门:QWQ 分析 太喵了~~~~~ 还有中途相遇法这种东西的. 嗯 以后可以优化一些暴力 详情左转蓝书P58 (但可能我OI生涯中都遇不到正解是这个的题把...... 代码 #include ...

随机推荐

  1. jQuery EasyUI - 数据表格(DataGrid)

    由于工作需要,项目使用前端 jQuery EasyUI - DataGrid 来控制数据表格. 1.加载相关js和css,因为easyui依赖jquery,所有加载easyui前要先加载jquery, ...

  2. NodeJS应用程序设置为window service-辅助工具(C#)

    1.修改nssm,去对话框后 2.生成批处理文件,执行 3.将nssm.exe.node.exe放在资源文件里面 附代码 工具

  3. Harbor私有仓库搭建

    1.安装docker yum install -y dockersystemctl start dockersystemctl enable docker 2.安装docker-compose 1.下 ...

  4. Java中finalize()用法

    Java中finalize()   垃圾回收器要回收对象的时候,首先要调用这个类的finalize方法(你可以 写程序验证这个结论),一般的纯Java编写的Class不需要重新覆盖这个方法,因为Obj ...

  5. SqlHelper简单实现(通过Expression和反射)3.实体,数据传输对象(DTO)Helper类设计

    EntityHelper的主要功能有: 1.通过反射获取DTO的字段,主要提供给在需要从Entity获取数据后,填充给DTO并返回的作用: 通过反射获取PropertyInfo[]对象,然后取出Nam ...

  6. uart测试代码

    #include <stdio.h> /*标准输入输出定义*/ #include <stdlib.h> /*标准函数库定义*/ #include <unistd.h> ...

  7. 数据库自动增长id下一次的值

    mysql SELECT auto_increment FROM information_schema.`TABLES` WHERE TABLE_SCHEMA='my_db_name' AND TAB ...

  8. linux du与ls查看文件大小时的区别

    du和ls查看文件大小的区别 du == disk usage (磁盘使用量,占用的磁盘空间)du 的基本使用du -s     #s参数是可以统计占硬盘空间大小的如 du -skh web-k或-- ...

  9. python爬虫之urllib库

    请求库 urllib urllib主要分为几个部分 urllib.request 发送请求urllib.error 处理请求过程中出现的异常urllib.parse 处理urlurllib.robot ...

  10. 深入理解JVM2

    1 JVM简介 VM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的. ...