CodeForces - 1025F:Disjoint Triangles (几何)
A point belongs to a triangle if it lies inside the triangle or on one of its sides. Two triangles are disjoint if there is no point on the plane that belongs to both triangles.
You are given nn points on the plane. No two points coincide and no three points are collinear.
Find the number of different ways to choose two disjoint triangles with vertices in the given points. Two ways which differ only in order of triangles or in order of vertices inside triangles are considered equal.
Input
The first line of the input contains an integer nn (6≤n≤20006≤n≤2000) – the number of points.
Each of the next nn lines contains two integers xixi and yiyi (|xi|,|yi|≤109|xi|,|yi|≤109) – the coordinates of a point.
No two points coincide and no three points are collinear.
Output
Print one integer – the number of ways to choose two disjoint triangles.
Examples
6
1 1
2 2
4 6
4 5
7 2
5 3
6
7
0 -1000000000
-5 -5
5 -5
-5 0
5 0
-2 2
2 2
21
题意:现在有N个点,满足没有三点共线,问有对少对三角形,满足没有公共部分。
思路:如果两个三角形A,B不相交,则有两种方式满足:A选择一个点a,B选择一个点b,三角形AB被直线ab隔开。那么我们枚举直线,然后直线两侧的点数分别是x,y,则其贡献是C(x,2)*C(y,2)*2,*2是因为有a可以和x部分组合,也可以和y部分组合,但最后要/2,因为没对三角形有两种直线满足。
具体的,我们用到了atan2(y1-y2,x1-x2),在一二象限为正,三四象限为负。
#include<bits/stdc++.h>
#define ll long long
#define pii pair<int,int>
#define pdd pair<double,double>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define F first
#define S second
using namespace std;
const double pi=acos(-1.0);
const int maxn=;
pdd a[maxn]; double w[maxn];
int main()
{
int N; ll ans=;
scanf("%d",&N);
rep(i,,N) scanf("%lf%lf",&a[i].F,&a[i].S);
rep(i,,N){
int tot=;
rep(j,,N) if(j!=i) w[++tot]=atan2(a[j].S-a[i].S,a[j].F-a[i].F); //纵坐标在前,横在后
sort(w+,w++tot);
for(int j=,k=;j<=tot&&w[j]<=;j++){
while(k<=tot&&w[k]-w[j]<pi) k++;
ans+=(ll)(k-j-)*(k-j-)/*(tot-k+j)*(tot-k+j-)/;
}
}
printf("%I64d\n",ans);
return ;
}
CodeForces - 1025F:Disjoint Triangles (几何)的更多相关文章
- [CodeForces]CodeForces - 1025F Disjoint Triangles
题意: 给出平面上n个点,问能在其中选出6个点,组成两个三角形,使得其互不相交 问有多少种选法 大致思路 考虑枚举一条直线,将所有得点分为左右两部分,其中有两个点在直线上, 以这两个点为顶点,分别统 ...
- Codeforces 15 E. Triangles
http://codeforces.com/problemset/problem/15/E 题意: 从H点走下去,再走回H点,不能走重复路径,且路径不能把黑色三角形包围的方案数 中间的黑色三角形把整张 ...
- Codeforces 793C - Mice problem(几何)
题目链接:http://codeforces.com/problemset/problem/793/C 题目大意:给你一个捕鼠器坐标,和各个老鼠的的坐标以及相应坐标的移动速度,问你是否存在一个时间点可 ...
- CodeForces - 13D :Triangles(向量法:问多少个蓝点三角形内部无红点)
Little Petya likes to draw. He drew N red and M blue points on the plane in such a way that no three ...
- Codeforces - 77B - Falling Anvils - 几何概型
https://codeforc.es/contest/77/problem/B 用求根公式得到: \(p-4q\geq0\) 换成熟悉的元: \(y-4x\geq0\) 其中: \(x:[-b,b] ...
- 【codeforces 229C】Triangles
[题目链接]:http://codeforces.com/problemset/problem/229/C [题意] 给你一张完全图; 然后1个人从中选择m条边; 然后另外一个人从中选择剩余的n*(n ...
- Codeforces 553C Love Triangles(图论)
Solution: 比较好的图论的题. 要做这一题,首先要分析love关系和hate关系中,love关系具有传递性.更关键的一点,hate关系是不能成奇环的. 看到没有奇环很自然想到二分图的特性. 那 ...
- codeforces 659D . Bicycle Race 几何
题目链接 对相邻的三个点叉积判断一下就好. #include <iostream> #include <vector> #include <cstdio> #inc ...
- [CF1025F]Disjoint Triangles[极角排序+组合计数]
题意 平面上有 \(n\) 个点,选出六个点构成两个三角形,问有多少种构造方式使得两个三角形没有交集. \(n\leq 2000\) 分析 枚举连接两个三角形的两个顶点,同时能够将两个三角形划分在直线 ...
随机推荐
- Android:日常学习笔记(9)———探究持久化技术
Android:日常学习笔记(9)———探究持久化技术 引入持久化技术 什么是持久化技术 持久化技术就是指将那些内存中的瞬时数据保存到存储设备中,保证即使在手机或电脑关机的情况下,这些数据仍然不会丢失 ...
- Android:日常学习笔记(8)———开发微信聊天界面
Android:日常学习笔记(8)———开发微信聊天界面 只做Nine-Patch图片 Nine-Patch是一种被特殊处理过的PNG图片,能够指定哪些区域可以被拉升,哪些区域不可以.
- python Selenium库的使用
一.什么是Selenium selenium 是一套完整的web应用程序测试系统,包含了测试的录制(selenium IDE),编写及运行(Selenium Remote Control)和测试的并行 ...
- 去重除了indexOf的其他方法(使用对象Key的方法)及统计重复次数
1.去重: 法1:使用数组IndexOf去重 法2:使用对象Key: <script> var arr1 = [1,13,24,11,11,14,1,2]; let unique = fu ...
- JSP笔记02——概述(转)
不完全翻译,结合谷歌,一定主观性,还可能有误,原始内容地址:https://www.tutorialspoint.com/jsp/jsp_overview.htm 主要内容如下: 什么是JSP? 为什 ...
- QFile操作文件
1.构造QFile对象 QFile file("C:\a.txt"); 或者 QFile *file = new QFile("C:\a.txt"); 2.设置 ...
- Windows 7安装PHP运行环境和开发环境
1. 安装Apache 下载地址:http://www.apache.org/dyn/closer.cgi/httpd/binaries/win32 如需更改端口:打开Apache安装目录下conf目 ...
- 【bzoj1318】[Spoj744] Longest Permutation(乱搞)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1318 这道题的大意是要求一个长度为len,并包含1~len所有数,并使len最大的子区 ...
- java 监控命令
jps 查找java所有进程及对应pid -v 列出启动参数 有些默认的参数,使用-v是看不到的,需要执行如下: jcmd pid VM.flags jstack pid 查看该进程的堆栈信息 找到进 ...
- nyoj 42 一笔画 欧拉通路
http://acm.nyist.net/JudgeOnline/problem.php?pid=42 一笔画问题 时间限制:3000 ms | 内存限制:65535 KB 难度:4 描述 zyc ...