题目

来画柿子吧

我们要求的是

\[f(x)\equiv t(mod\ \ p)
\]

其中\(f(1)=x_0,f(x)=af(x-1)+b\)

我们来写几项柿子看看

\[f(1)=x_0
\]

\[f(2)=ax_0+b
\]

\[f(3)=a(ax_0+b)+b=a^2x_0+ab+b
\]

\[f(4)=a^3x_0+a^2b+ab+b
\]

我们发现好像后面就是一个等比数列求和啊

于是我们甚至可以搞出一个通项来

于是

\[f(x)=a^{x-1}x_0+b\sum_{i=0}^{x-2}a^i
\]

显然后面那个东西就是\(\frac{a^{x-1}-1}{a-1}\)

所以

\[f(x)=a^{x-1}x_0+\frac{b\times a^{x-1}-b}{a-1}
\]

干脆设\(k=x-1\)

\[f(x)=\frac{a^kx_0(a-1)+b\times a^k-b}{a-1}=\frac{a^k(ax_0-x_0+b)-b}{a-1}
\]

所以我们现在的方程是

\[\frac{a^k(ax_0-x_0+b)}{a-1}-\frac{b}{a-1}\equiv t(mod\ p)
\]

我们设

\[inv=inv(\frac{ax_0-x_0+b}{a-1},p)
\]

所以现在变成了

\[a^k\equiv (t+\frac{b}{a-1})\times inv(mod\ \ p)
\]

所以这不就是\(bsgs\)板子了吗,\(k+1\)就是答案了

注意特判掉\(a=1\)以及\(x_0=t\)的情况

代码

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<tr1/unordered_map>
#define re register
#define LL long long
using namespace std::tr1;
unordered_map<LL,LL> ma;
int T;
LL P,a,b,x0,t;
void exgcd(LL a,LL b,LL &x,LL &y) {if(!b) {x=1,y=0;return;} exgcd(b,a%b,y,x);y-=a/b*x;}
inline LL quick(LL a,LL b) {LL S=1;while(b) {if(b&1) S=S*a%P; b>>=1; a=a*a%P;} return S;}
inline void bsgs()
{
if(x0==t) {puts("1");return;}
if(a==0) {if(b==t) puts("2");else puts("-1"); return;}
if(a==1&&!b) {puts("-1");return;}
if(a==1&&b)
{
t=t-x0; t=(t%P+P)%P;
LL x,y;
exgcd(b,P,x,y); x=(x*t%P+P)%P;
printf("%lld\n",x+1); return;
}
ma.clear();
if(a%P==0) {puts("-1");return;}
LL inv=(a*x0%P-x0+b)%P; inv=(inv+P)%P;
LL x,y; exgcd(a-1,P,x,y); x=(x%P+P)%P; t=t+(b*x)%P; t%=P;inv=inv*x%P;
exgcd(inv,P,x,y);
x=(x%P+P)%P;
t=t*x%P;
LL now=1;
LL m=ceil(std::sqrt(P+1));
for(re int i=0;i<=m;i++) ma[now*t%P]=i,now=now*a%P;
LL S=quick(a,m);now=S;
for(re int i=1;i<=m;i++)
{
if(ma.find(now)!=ma.end())
{LL ans=(LL)i*(LL)m-ma[now];printf("%lld\n",ans+1);return;}
now=now*S%P;
}
puts("-1");
}
int main()
{
scanf("%d",&T);
while(T--) scanf("%lld%lld%lld%lld%lld",&P,&a,&b,&x0,&t),bsgs();
return 0;
}

【[SDOI2013]随机数生成器】的更多相关文章

  1. 【BZOJ 3122】 [Sdoi2013]随机数生成器 (BSGS)

    3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1442  Solved: 552 Description ...

  2. bzoj3122 [SDOI2013]随机数生成器

    bzoj3122 [SDOI2013]随机数生成器 给定一个递推式, \(X_i=(aX_{i-1}+b)\mod P\) 求满足 \(X_k=t\) 的最小整数解,无解输出 \(-1\) \(0\l ...

  3. 洛咕 P3306 [SDOI2013]随机数生成器

    洛咕 P3306 [SDOI2013]随机数生成器 大力推式子??? \(X_{i}=\underbrace{a(a(\cdots(a(a}_{i-1个a}X_1+b)))\cdots)\) \(=b ...

  4. 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判

    [BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数.   接下来T行,每行有五个整数p,a,b, ...

  5. 【bzoj3122】: [Sdoi2013]随机数生成器 数论-BSGS

    [bzoj3122]: [Sdoi2013]随机数生成器 当a>=2 化简得 然后 BSGS 求解 其他的特判 : 当 x=t  n=1 当 a=1  当 a=0 判断b==t /* http: ...

  6. 【洛谷 P3306】[SDOI2013]随机数生成器 (BSGS)

    题目链接 怎么这么多随机数生成器 题意见原题. 很容易想到\(BSGS\)算法,但是递推式是\(X_{i+1}=(aX_i+b)\mod p\),这显然不是一个等比数列. 但是可以用矩阵乘法来求出第\ ...

  7. bzoj 3122: [Sdoi2013]随机数生成器

    #include<cstdio> #include<iostream> #include<map> #include<cmath> #define ll ...

  8. bzoj 3122 [Sdoi2013]随机数生成器(逆元,BSGS)

    Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数.    接下来T行,每行有五个整数p,a,b,X1,t,表示一组数据.保证X1和t都是合法的页码. ...

  9. BZOJ3122: [Sdoi2013]随机数生成器(BSGS)

    题意 题目链接 Sol 这题也比较休闲. 直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿 \[ a^{i-1} (x_1 + \frac{b}{ ...

  10. bzoj千题计划259:bzoj3122: [Sdoi2013]随机数生成器

    http://www.lydsy.com/JudgeOnline/problem.php?id=3122 等比数列求和公式+BSGS #include<map> #include<c ...

随机推荐

  1. Two Sum [easy] (Python)

    由于题目说了有且只有唯一解,可以考虑两遍扫描求解:第一遍扫描原数组,将所有的数重新存放到一个dict中,该dict以原数组中的值为键,原数组中的下标为值:第二遍扫描原数组,对于每个数nums[i]查看 ...

  2. vue-vli3创建的项目配置热更新

    vue-vli3创建的项目配置热更新 问题描述:使用vue-cli3创建的项目,修改代码之后,浏览器页面不会自动刷新,然而之前使用webpack初始化的vue项目修改代码之后浏览器会重新加载一下,因为 ...

  3. kafaka安装

    wget https://mirrors.cnnic.cn/apache/kafka/2.0.0/kafka_2.11-2.0.0.tgz 解压 Tar -xvf kafka_2.11-2.0.0.t ...

  4. 理解 glibc malloc:主流用户态内存分配器实现原理

    https://blog.csdn.net/maokelong95/article/details/51989081 Understanding glibc malloc 修订日志: 2017-03- ...

  5. TimesTen客户端DSN配置

    打开控制面板\管理工具 1.打开数据源(ODBC) 2.选择系统DSN 3.选择添加: 4.单击完成 5.Servers

  6. java多态的具体表现实例和理解

    Java的多态性 面向对象编程有三个特征,即封装.继承和多态. 封装隐藏了类的内部实现机制,从而可以在不影响使用者的前提下改变类的内部结构,同时保护了数据. 继承是为了重用父类代码,同时为实现多态性作 ...

  7. 虚拟机vmware 上不去 连不上网问题解决

    开始---设置--控制面板---管理工具---服务 确保 VMware DHCP Service 和VMware NAT Service 服务已经启动

  8. Eclipse error: “The import XXX cannot be resolved”

    解决 Eclipse error: “The import XXX cannot be resolved” eclipse中修改: 1. 项目-->Properties-->java bu ...

  9. vs2012 使用方法汇总

    1)安装Vsiual Assist插件 工具栏-->tools-->Extentsions and Upates-->点击左边的Online然后右边会出现可以安装的插件,找到Visu ...

  10. 【Shell】按行读取文件内容

    方法1:while循环中执行效率最高,最常用的方法. function while_read_LINE_bottm(){ While read LINE do echo $LINE done < ...