Clickomania

Time Limit: 10000ms
Memory Limit: 32768KB

64-bit integer IO format: %I64d      Java class name: Main

Clickomania is a puzzle in which one starts with a rectangular grid of cells of different colours. In each step, a player selects ("clicks") a cell. All connected cells of the same colour as the selected cell (including itself) are removed if the selected cell is connected to at least one other cell of the same colour. The resulting "hole" is filled in by adjacent cells based on some rule, and the object of the game is to remove all cells in the grid. In this problem, we are interested in the one-dimensional version of the problem. The starting point of the puzzle is a string of colours (each represented by an uppercase letter).
At any point, one may select (click) a letter provided that the same letter occurs before or after the one selected. The substring of the same letter containing the selected letter is removed, and the string is shortened to remove the hole created. To solve the puzzle, the player has to remove all letters and obtain the empty string. If the player obtains a non-empty string in which no letter can be selected, then the player loses. For example, if one starts with the string "ABBAABBAAB", selecting the first "B" gives "AAABBAAB". Next, selecting the last "A" gives "AAABBB". Selecting an "A" followed by a "B" gives the empty string. On the other hand, if one selects the third "B" first, the string "ABBAAAAB" is obtained. One may verify that regardless of the next selections, we obtain either the string "A" or the string "B" in which no letter can be selected. Thus, one must be careful in the sequence of selections chosen in order to solve a puzzle. Furthermore,
there are some puzzles that cannot be solved regardless of the choice of selections. For example, "ABBAAAAB" is not a solvable puzzle. Some facts are known about solvable puzzles: The empty string is solvable. If x and y are solvable puzzles, so are xy, AxA, and AxAyA for any uppercase letter
A. All other puzzles not covered by the rules above are unsolvable.
Given a puzzle, your task is to determine whether it can be solved or not.

 

Input

Each case of input is specified by a single line. Each line contains a string of uppercase letters. Each string has at least one but no more than 150 characters. The input is terminated by the end of file.

 

Output

For each input case, print solvable on a single line if there is a sequence of selections that solves the puzzle. Otherwise, print unsolvable on a line.

 

Sample Input

ABBAABBAAB
ABBAAAAB

Sample Output

solvable
unsolvable 解题思路:因为题目中给出了状态转移的三种情况。即xy, AxA, and AxAyA。所以对这些情况分别讨论。最不好做的就是AxAyA这种情况。找到中间的A之后,判断中间的A分别和两边的A之间是否可消,这里将空串处理为可消的情况。
#include<bits/stdc++.h>
using namespace std;
const int maxn=300;
bool dp[maxn][maxn];
bool jud(int x,int y,char s[]){
for(int i=x+1;i<y;i++){
if(dp[x][i]&&dp[i+1][y]){ //AABBB即xy的情况
return true;
}
}
if(s[x]==s[y]){
if(y-x==1){ //AA即x的情况
return true;
}
if(dp[x+1][y-1]){ //ABBA即AxA情况
return true;
}
for(int i=x+1;i<y;i++){ //ABBACCA即AxAyA情况
if(s[i]==s[x]){ //枚举中间的A
//如果A的左侧有空串或能消并且A的右侧有空串或能消,即能消
if((i-1<x+1||dp[x+1][i-1])&&(i+1>y-1||dp[i+1][y-1])){
return true;
}
}
}
}
return false;
}
void DP(char s[]){
int len=strlen(s);
for(int k=1;k<len;k++){
for(int i=0;i<len-k;i++){
int j=i+k;
dp[i][j]=jud(i,j,s);
}
}
}
int main(){
char str[300];
while(scanf("%s",str)!=EOF){
memset(dp,0,sizeof(dp));
DP(str);
int len=strlen(str);
if(!dp[0][len-1]){
printf("un");
}
printf("solvable\n");
}
return 0;
}

  

 

BNU7538——Clickomania——————【区间dp】的更多相关文章

  1. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  2. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  3. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  4. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

  5. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  6. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  7. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

  8. 区间dp总结篇

    前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...

  9. Uva 10891 经典博弈区间DP

    经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...

  10. 2016 年沈阳网络赛---QSC and Master(区间DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5900 Problem Description Every school has some legend ...

随机推荐

  1. 微信支付接入的总结 —— NATIVE & MWEB & JSAPI

    这段时间工作中需要对接微信支付,而且要多个端同时进行接入,web端,手机浏览器,微信浏览器,所以研究了下.不同场景选择合适的接入方式是必须的.https://pay.weixin.qq.com/wik ...

  2. 【题解】 UVa11292 The Dragon of Loowater

    题目大意: 你的王国里有一条n个头的恶龙,你希望雇佣一些骑士把它杀死(即砍掉所有头).村里有m个骑士可以雇佣,一个能力值为x的骑士可以砍掉恶龙一个直径不超过x的头,且需要支付x个金币.如何雇佣骑士才能 ...

  3. openvpn的搭建与应用

    一.VPN概述: VPN(Virtual Private NetWork,虚拟专用网络)架设在公共共享的基础设施互联网上,在非信任的网络上建立私有的安全的连接,把分布在不同地域的办公场所.用户或者商业 ...

  4. 墨菲定律与 IndexOutOfBoundsException(数组越界异常)

    今天维护又反馈了一问题过来,查询试卷时报数组越界异常: 2017-02-28 10:45:24,827[ERROR] HttpException[10.32.111.7:60446:2D07867BE ...

  5. kali linux之xss

    攻击web客户端 客户端脚本语言(弹窗,广告,在浏览器中执行,javascript) javascript--与java语言无关,使用最广的客户端脚本语言 xss(cross-site scripti ...

  6. VS2017+DLib_19.17详细配置教程

      最近学校布置了一个关于图像融合的作业,于是想利用Learn OpenCV 网站上的Face Morph 教程来设计一个人脸融合的Gif图,但是程序中需要用到DLib库,光是配置这个库就花费了我半天 ...

  7. python Exception

    1.except:用来捕捉异常,如果没有捕捉到,则向上层exception传递 2.finally:用来保证其代码一定会执行,可以做收尾工作,比如关闭文件等等. 3.在with as 中, 4.try ...

  8. 修复win10无法双击打开txt文档.reg

    Windows Registry Editor Version 5.00[HKEY_CLASSES_ROOT\.txt]@="txtfile""Content Type& ...

  9. flex布局浅谈

    flex布局浅谈和实例 阿基米德曾说给我一个支点我可以撬动地球,而拥有flex基本可以撬动所有的布局. 1.flex布局基本介绍及效果展示 工欲善其事必先利其器,来来来,一起看下基础知识先(呵~,老掉 ...

  10. Qt 学习之路 2(38):存储容器

    Qt 学习之路 2(38):存储容器 豆子 2013年1月14日 Qt 学习之路 2 38条评论 存储容器(containers)有时候也被称为集合(collections),是能够在内存中存储其它特 ...