C++11中rvalue references的使用
Rvalue references are a feature of C++ that was added with the C++11 standard. The syntax of an rvalue reference is to add && after a type.
In C++, there are rvalues and lvalues. An lvalue is an expression whose address can be taken,a locator value--essentially, an lvalue provides a (semi)permanent piece of memory. rvalues are not lvalues. An expression is an rvalue if it results in a temporary object.
Every C++ expression is either an lvalue or an rvalue. An lvalue refers to an object that persists beyond a single expression. You can think of an lvalue as an object that has a name. All variables, including nonmodifiable (const) variables, are lvalues. An rvalue is a temporary value that does not persist beyond the expression that uses it.
an "rvalue reference", that will let you bind a mutable reference to an rvalue, but not an lvalue. In other words, rvalue references are perfect for detecting if a value is temporary object or not. Rvalue references use the && syntax instead of just &, and can be const and non-const, just like lvalue references, although you'll rarely see a const rvalue reference.
Rvalue references solve at least two problems: Implementing move semantics; Perfect forwarding.
The original definition of lvalues and rvalues from the earliest days of C is as follows: An lvalue is an expression e that may appear on the left or on the right hand side of an assignment, whereas an rvalue is an expression that can only appear on the right hand side of an assignment.
If X is any type, then X&& is called an rvalue reference to X. For better distinction, the ordinary reference X& is now also called an lvalue reference.
rvalue references enable us to distinguish an lvalue from an rvalue.
In C++11,however, the rvalue reference lets us bind a mutable reference to an rvalue,but not an lvalue. In other words, rvalue references are perfect for detecting whether a value is a temporary object or not.
Important rvalue reference properties:
(1)、For overload resolution, lvalues prefer binding to lvalue references and rvalues prefer binding to rvalue references. Hence why temporaries prefer invoking a move constructor / move assignment operator over a copy constructor / assignment operator.
(2)、rvalue references will implicitly bind to rvalues and to temporaries that are the result of an implicit conversion. i.e. float f = 0f; int&& i = f; is well formed because float is implicitly convertible to int; the reference would be to a temporary that is the result of the conversion.
(3)、Named rvalue references are lvalues. Unnamed rvalue references are rvalues. This is important to understand why the std::move call is necessary in: foo&& r= foo(); foo f = std::move(r).
Rvalue references enable you to distinguish an lvalue from an rvalue. Lvalue references and rvalue references are syntactically and semantically similar,but they follow somewhat different rules.
右值引用是C++11中最重要的新特性之一,它解决了C++中大量的历史遗留问题,使C++标准库的实现在多种场景下消除了不必要的额外开销(如std::vector, std::string),也使得另外一些标准库(如std::unique_ptr, std::function)成为可能。即使你并不直接使用右值引用,也可以通过标准库,间接从这一新特性中受益。
右值引用的意义通常解释为两大作用:移动语义和完美转发。
右值引用可以使我们区分表达式的左值和右值。
右值引用它实现了移动语义(Move Sementics)和完美转发(Perfect Forwarding)。它的主要目的有两个方面:(1)、消除两个对象交互时不必要的对象拷贝,节省运算存储资源,提高效率;(2)、能够更简洁明确地定义泛型函数。
右值引用主要就是解决一个拷贝效率低下的问题,因为针对于右值,或者打算更改的左值,我们可以采用类似与auto_ptr的move(移动)操作,大大的提高性能(move semantics)。另外,C++的模板推断机制为参数T&&做了一个例外规则,让左值和右值的识别和转向(forward)非常简单,帮助我们写出高效并且简捷的泛型代码(perfect forwarding)。
左值的声明符号为”&”, 为了和左值区分,右值的声明符号为”&&”。
下面是从其他文章中copy的测试代码,详细内容介绍可以参考对应的reference:
#include "rvalue_references.hpp"
#include <iostream>
#include <string>
#include <utility>
//////////////////////////////////////////////////
// reference: http://en.cppreference.com/w/cpp/language/reference
void double_string(std::string& s)
{
s += s; // 's' is the same object as main()'s 'str'
}
char& char_number(std::string& s, std::size_t n)
{
return s.at(n); // string::at() returns a reference to char
}
int test_lvalue_references1()
{
// 1. Lvalue references can be used to alias an existing object (optionally with different cv-qualification):
std::string s = "Ex";
std::string& r1 = s;
const std::string& r2 = s;
r1 += "ample"; // modifies s
// r2 += "!"; // error: cannot modify through reference to const
std::cout << r2 << '\n'; // prints s, which now holds "Example"
// 2. They can also be used to implement pass-by-reference semantics in function calls:
std::string str = "Test";
double_string(str);
std::cout << str << '\n';
// 3. When a function's return type is lvalue reference, the function call expression becomes an lvalue expression
std::string str_ = "Test";
char_number(str_, 1) = 'a'; // the function call is lvalue, can be assigned to
std::cout << str_ << '\n';
return 0;
}
//////////////////////////////////////////////////
// reference: http://en.cppreference.com/w/cpp/language/reference
static void f(int& x)
{
std::cout << "lvalue reference overload f(" << x << ")\n";
}
static void f(const int& x)
{
std::cout << "lvalue reference to const overload f(" << x << ")\n";
}
static void f(int&& x)
{
std::cout << "rvalue reference overload f(" << x << ")\n";
}
int test_rvalue_references1()
{
// 1. Rvalue references can be used to extend the lifetimes of temporary objects
// (note, lvalue references to const can extend the lifetimes of temporary objects too, but they are not modifiable through them):
std::string s1 = "Test";
// std::string&& r1 = s1; // error: can't bind to lvalue
const std::string& r2 = s1 + s1; // okay: lvalue reference to const extends lifetime
// r2 += "Test"; // error: can't modify through reference to const
std::string&& r3 = s1 + s1; // okay: rvalue reference extends lifetime
r3 += "Test"; // okay: can modify through reference to non-const
std::cout << r3 << '\n';
// 2. More importantly, when a function has both rvalue reference and lvalue reference overloads,
// the rvalue reference overload binds to rvalues (including both prvalues and xvalues),
// while the lvalue reference overload binds to lvalues:
int i = 1;
const int ci = 2;
f(i); // calls f(int&)
f(ci); // calls f(const int&)
f(3); // calls f(int&&)
// would call f(const int&) if f(int&&) overload wasn't provided
f(std::move(i)); // calls f(int&&)
// This allows move constructors, move assignment operators, and other move-aware functions
// (e.g. vector::push_back() to be automatically selected when suitable.
return 0;
}
/////////////////////////////////////////////////////
// reference: http://www.bogotobogo.com/cplusplus/C11/5_C11_Move_Semantics_Rvalue_Reference.php
static void printReference(int& value)
{
std::cout << "lvalue: value = " << value << std::endl;
}
static void printReference(int&& value)
{
std::cout << "rvalue: value = " << value << std::endl;
}
static int getValue()
{
int temp_ii = 99;
return temp_ii;
}
int test_rvalue_references2()
{
int ii = 11;
printReference(ii);
printReference(getValue()); // printReference(99);
return 0;
}
////////////////////////////////////////////////////////////
// references: https://msdn.microsoft.com/en-us/library/dd293668.aspx
template<typename T> struct S;
// The following structures specialize S by
// lvalue reference (T&), const lvalue reference (const T&),
// rvalue reference (T&&), and const rvalue reference (const T&&).
// Each structure provides a print method that prints the type of
// the structure and its parameter.
template<typename T> struct S<T&> {
static void print(T& t)
{
std::cout << "print<T&>: " << t << std::endl;
}
};
template<typename T> struct S<const T&> {
static void print(const T& t)
{
std::cout << "print<const T&>: " << t << std::endl;
}
};
template<typename T> struct S<T&&> {
static void print(T&& t)
{
std::cout << "print<T&&>: " << t << std::endl;
}
};
template<typename T> struct S<const T&&> {
static void print(const T&& t)
{
std::cout << "print<const T&&>: " << t << std::endl;
}
};
// This function forwards its parameter to a specialized
// version of the S type.
template <typename T> void print_type_and_value(T&& t)
{
S<T&&>::print(std::forward<T>(t));
}
// This function returns the constant string "fourth".
const std::string fourth() { return std::string("fourth"); }
int test_rvalue_references3()
{
// The following call resolves to:
// print_type_and_value<string&>(string& && t)
// Which collapses to:
// print_type_and_value<string&>(string& t)
std::string s1("first");
print_type_and_value(s1);
// The following call resolves to:
// print_type_and_value<const string&>(const string& && t)
// Which collapses to:
// print_type_and_value<const string&>(const string& t)
const std::string s2("second");
print_type_and_value(s2);
// The following call resolves to:
// print_type_and_value<string&&>(string&& t)
print_type_and_value(std::string("third"));
// The following call resolves to:
// print_type_and_value<const string&&>(const string&& t)
print_type_and_value(fourth());
return 0;
}
GitHub:https://github.com/fengbingchun/Messy_Test
C++11中rvalue references的使用的更多相关文章
- [转载] C++11中的右值引用
C++11中的右值引用 May 18, 2015 移动构造函数 C++98中的左值和右值 C++11右值引用和移动语义 强制移动语义std::move() 右值引用和右值的关系 完美转发 引用折叠推导 ...
- 翻译「C++ Rvalue References Explained」C++右值引用详解 Part1:概述
本文系对「C++ Rvalue References Explained」 该文的翻译,原文作者:Thomas Becker. 该文较详细的解释了C++11右值引用的作用和出现的意义,也同时被Scot ...
- C++ 11 中的右值引用
C++ 11 中的右值引用 右值引用的功能 首先,我并不介绍什么是右值引用,而是以一个例子里来介绍一下右值引用的功能: #include <iostream> #include &l ...
- c++11 中的 move 与 forward
[update: 关于左值右值的另一点总结,请参看这篇] 一. move 关于 lvaue 和 rvalue,在 c++11 以前存在一个有趣的现象:T& 指向 lvalue (左传引用), ...
- C++11中的右值引用
原文出处:http://kuring.me/post/cpp11_right_reference May 18, 2015 移动构造函数 C++98中的左值和右值 C++11右值引用和移动语义 强制移 ...
- 二十分钟弄懂C++11 的 rvalue reference (C++ 性能剖析 (5))
C++ 11加了许多新的功能.其中对C++性能和我们设计class的constructor或assignment可能产生重大影响的非rvalue reference莫属!我看了不少资料,能说清它的不多 ...
- C++11 中值得关注的几大变化(网摘)
C++11 中值得关注的几大变化(详解) 原文出处:[陈皓 coolshell] 源文章来自前C++标准委员会的 Danny Kalev 的 The Biggest Changes in C++11 ...
- C++11 中值得关注的几大变化(详解)
源文章来自前C++标准委员会的 Danny Kalev 的 The Biggest Changes in C++11 (and Why You Should Care),赖勇浩做了一个中文翻译在这里. ...
- C++11中std::forward的使用 (转)
std::forward argument: Returns an rvalue reference to arg if arg is not an lvalue reference; If arg ...
随机推荐
- STM32-F429ZIT6-关于驱动安装
第一步:下载驱动 1.个人百度云链接:http://pan.baidu.com/s/1dE8vxy5 密码:yow0 2.网站下载:这个还是直接百度吧. 第二步:驱动安装 注意:安装之前要先关闭安全监 ...
- 在浏览器里使用SAPGUI里的SE80
效果如图:点击Fiori launchpad的SE80对应的tile: 即可在浏览器里打开SE80 具体步骤 (1). 在后台找到Fiori catalog page ID: SAP_FIORI_EX ...
- JsonResponse、FileResponse和StreamingHttpResponse
一.JsonResponse对象 class JsonResponse(data,encoder=DjangoJSONEncoder,safe=True,json_dumps_params=None, ...
- DOS下启动MySQL时输入net start mysql 提示服务名无效的问题
原因:mysql服务名错误. 正确做法:net start +mysql服务名
- Jmeter入门9 __digest函数 jmeter字符串连接与登录串加密应用
登录请求中加密串是由多个子串连接,再加密之后传输. 参数连接:${var1}${var2}${var3} 加密函数:__digest (函数助手里如果没有该函数,请下载最新版本的jmeter5 ...
- fiddler和charles
(4)学习浏览器代理和手机网络抓包,涉及到了fiddler和charles,
- Android笔记之 图片自由裁剪
前言--项目中须要用到对用户头像的裁剪和上传功能.关于裁剪.一開始是想自己来做,可是认为这个东西应该谷歌有开发吧,于是一搜索官方文档.果然有.于是.就果断无耻地用了Android自带有关于照片的自由裁 ...
- SignalR集成Autofac
SignalR SignalR集成需要 Autofac.SignalR NuGet 包. SignalR 集成提供SignalR 集线器的依赖集成.由于 SignalR 是内部构件,所以不支持Sign ...
- Android学习笔记_19_广播接收者 BroadcastReceiver及其应用_窃听短信_拦截外拨电话
一.广播接收者类型: 广播被分为两种不同的类型:“普通广播(Normal broadcasts)”和“有序广播(Ordered broadcasts)”. 普通广播是完全异步的,可以在同一时刻(逻辑上 ...
- HDU 2005 第几天?(闰年判断)
传送门: acm.hdu.edu.cn/showproblem.php?pid=2005 第几天? Time Limit: 2000/1000 MS (Java/Others) Memory L ...