HBase 写优化之 BulkLoad 实现数据快速入库
在第一次建立Hbase表的时候,我们可能需要往里面一次性导入大量的初始化数据。我们很自然地想到将数据一条条插入到Hbase中,或者通过MR方式等。但是这些方式不是慢就是在导入的过程的占用Region资源导致效率低下,所以很不适合一次性导入大量数据。本文将针对这个问题介绍如何通过Hbase的BulkLoad方法来快速将海量数据导入到Hbase中。
总的来说,使用 Bulk Load 方式由于利用了 HBase 的数据信息是按照特定格式存储在 HDFS 里的这一特性,直接在 HDFS 中生成持久化的 HFile 数据格式文件,然后完成巨量数据快速入库的操作,配合 MapReduce 完成这样的操作,不占用 Region 资源,不会产生巨量的写入 I/O,所以需要较少的 CPU 和网络资源。Bulk Load 的实现原理是通过一个 MapReduce Job 来实现的,通过 Job 直接生成一个 HBase 的内部 HFile 格式文件,用来形成一个特殊的 HBase 数据表,然后直接将数据文件加载到运行的集群中。与使用HBase API相比,使用Bulkload导入数据占用更少的CPU和网络资源。
实现原理
Bulkload过程主要包括三部分:
1、从数据源(通常是文本文件或其他的数据库)提取数据并上传到HDFS。抽取数据到HDFS和Hbase并没有关系,所以大家可以选用自己擅长的方式进行,本文就不介绍了。
2、利用MapReduce作业处理实现准备的数据 。这一步需要一个MapReduce作业,并且大多数情况下还需要我们自己编写Map函数,而Reduce函数不需要我们考虑,由HBase提供。该作业需要使用rowkey(行键)作为输出Key;KeyValue、Put或者Delete作为输出Value。MapReduce作业需要使用HFileOutputFormat2
来生成HBase数据文件。为了有效的导入数据,需要配置HFileOutputFormat2
使得每一个输出文件都在一个合适的区域中。为了达到这个目的,MapReduce作业会使用Hadoop的TotalOrderPartitioner
类根据表的key值将输出分割开来。HFileOutputFormat2
的方法configureIncrementalLoad()
会自动的完成上面的工作。
3、告诉RegionServers数据的位置并导入数据。这一步是最简单的,通常需要使用LoadIncrementalHFiles
(更为人所熟知是completebulkload
工具),将文件在HDFS上的位置传递给它,它就会利用RegionServer将数据导入到相应的区域。
整个过程图如下:
代码实现
上面我们已经介绍了Hbase的BulkLoad方法的原理,我们需要写个Mapper和驱动程序,实现如下:
使用MapReduce生成HFile文件
public
class
IteblogBulkLoadMapper
extends
Mapper<LongWritable, Text, ImmutableBytesWritable, Put>{
protected
void
map(LongWritable key, Text value, Context context)
throws
IOException, InterruptedException {
String line = value.toString();
String[] items = line.split(
"\t"
);
ImmutableBytesWritable rowKey =
new
ImmutableBytesWritable(items[
0
].getBytes());
Put put =
new
Put(Bytes.toBytes(items[
0
]));
//ROWKEY
put.addColumn(
"f1"
.getBytes(),
"url"
.getBytes(), items[
1
].getBytes());
put.addColumn(
"f1"
.getBytes(),
"name"
.getBytes(), items[
2
].getBytes());
context.write(rowkey, put);
}
}
驱动程序
public
class
IteblogBulkLoadDriver {
public
static
void
main(String[] args)
throws
IOException, ClassNotFoundException, InterruptedException {
Configuration conf = HBaseConfiguration.create();
Job job=Job.getInstance(conf);
job.setJarByClass(IteblogBulkLoadDriver.
class
);
job.setMapperClass(IteblogBulkLoadMapper.
class
);
job.setMapOutputKeyClass(ImmutableBytesWritable.
class
);
job.setMapOutputValueClass(Put.
class
);
job.setOutputFormatClass(HFileOutputFormat2.
class
);
HTable table =
new
HTable(conf,
"blog_info"
);
HFileOutputFormat2.configureIncrementalLoad(job,table,table.getRegionLocator());
FileInputFormat.addInputPath(job,
new
Path(SRC_PATH));
FileOutputFormat.setOutputPath(job,
new
Path(DESC_PATH));
System.exit(job.waitForCompletion(
true
)?
0
:
1
);
}
}
通过BlukLoad方式加载HFile文件
public
class
LoadIncrementalHFileToHBase {
public
static
void
main(String[] args)
throws
Exception {
Configuration conf = HBaseConfiguration.create();
Connection connection = ConnectionFactory.createConnection(configuration);
LoadIncrementalHFiles loder =
new
LoadIncrementalHFiles(configuration);
}
}
由于Hbase的BulkLoad方式是绕过了Write to WAL,Write to MemStore及Flush to disk的过程,所以并不能通过WAL来进行一些复制数据的操作。后面我将会再介绍如何通过Spark来使用Hbase的BulkLoad方式来初始化数据。
BulkLoad的使用案例
1、首次将原始数据集载入 HBase- 您的初始数据集可能很大,绕过 HBase 写入路径可以显著加速此进程。
2、递增负载 - 要定期加载新数据,请使用 BulkLoad
并按照自己的理想时间间隔分批次导入数据。这可以缓解延迟问题,并且有助于您实现服务级别协议 (SLA)。但是,压缩触发器就是
RegionServer 上的 HFile 数目。因此,频繁导入大量 HFile
可能会导致更频繁地发生大型压缩,从而对性能产生负面影响。您可以通过以下方法缓解此问题:调整压缩设置,确保不触发压缩即可存在的最大 HFile
文件数很高,并依赖于其他因素,如 Memstore 的大小 触发压缩。
3、数据需要源于其他位置 - 如果当前系统捕获了您想在 HBase 中包含的数据,且因业务原因需要保持活动状态,您可从系统中将数据定期批量加载到 HBase 中,以便可以在不影响系统的前提下对其执行操作。
生成HFile程序说明:
①. 最终输出结果,无论是map还是reduce,输出部分key和value的类型必须是: < ImmutableBytesWritable, KeyValue>或者< ImmutableBytesWritable, Put>。
②. 最终输出部分,Value类型是KeyValue 或Put,对应的Sorter分别是KeyValueSortReducer或PutSortReducer。
③. MR例子中job.setOutputFormatClass(HFileOutputFormat.class); HFileOutputFormat只适合一次对单列族组织成HFile文件。好像最新的版本可以多个列族.
④. MR例子中HFileOutputFormat.configureIncrementalLoad(job, table);自动对job进行配置。TotalOrderPartitioner是需要先对key进行整体排序,然后划分到每个reduce中,保证每一个reducer中的的key最小最大值区间范围,是不会有交集的。因为入库到HBase的时候,作为一个整体的Region,key是绝对有序的。
⑤. MR例子中最后生成HFile存储在HDFS上,输出路径下的子目录是各个列族。如果对HFile进行入库HBase,相当于move HFile到HBase的Region中,HFile子目录的列族内容没有了。
说明: 因为在创建HBase表的时候,默认只有一个Region,只有等到这个Region的大小超过一定的阈值之后,才会进行split, 所以为了利用完全分布式加快生成HFile和导入HBase中以及数据负载均衡,所以需要在创建表的时候预先创建分区,可以查阅相关资料(关于HBase调优的资料), 而进行分区时要利用startKey与endKey进行rowKey区间划分(因为导入HBase中,需要rowKey整体有序),所以在导入之前,自己先写一个MapReduce的Job求最小与最大的rowKey, 即startKey与endKey.
3、说明与注意事项:
(1)HFile方式在所有的加载方案里面是最快的,不过有个前提——数据是第一次导入,表是空的。如果表中已经有了数据。HFile再导入到hbase的表中会触发split操作。
(2)最终输出结果,无论是map还是reduce,输出部分key和value的类型必须是: < ImmutableBytesWritable, KeyValue>或者< ImmutableBytesWritable, Put>。
否则报这样的错误:
java.lang.IllegalArgumentException: Can't read partitions file
...
Caused by: java.io.IOException: wrong key class: org.apache.hadoop.io.*** is not class org.apache.hadoop.hbase.io.ImmutableBytesWritable
(3)最终输出部分,Value类型是KeyValue 或Put,对应的Sorter分别是KeyValueSortReducer或PutSortReducer,这个 SorterReducer 可以不指定,因为源码中已经做了判断:
if (KeyValue.class.equals(job.getMapOutputValueClass())) {
job.setReducerClass(KeyValueSortReducer.class);
} else if (Put.class.equals(job.getMapOutputValueClass())) {
job.setReducerClass(PutSortReducer.class);
} else {
LOG.warn("Unknown map output value type:" + job.getMapOutputValueClass());
}
(4) MR例子中job.setOutputFormatClass(HFileOutputFormat.class); HFileOutputFormat只适合一次对单列族组织成HFile文件,多列簇需要起多个 job,不过新版本的 Hbase 已经解决了这个限制。
(5) MR例子中最后生成HFile存储在HDFS上,输出路径下的子目录是各个列族。如果对HFile进行入库HBase,相当于move HFile到HBase的Region中,HFile子目录的列族内容没有了。
(6)最后一个 Reduce 没有 setNumReduceTasks 是因为,该设置由框架根据region个数自动配置的。
(7)下边配置部分,注释掉的其实写不写都无所谓,因为看源码就知道configureIncrementalLoad方法已经把固定的配置全配置完了,不固定的部分才需要手动配置。
public class HFileOutput {
//job 配置
public static Job configureJob(Configuration conf) throws IOException {
Job job = new Job(configuration, "countUnite1");
job.setJarByClass(HFileOutput.class);
//job.setNumReduceTasks(2);
//job.setOutputKeyClass(ImmutableBytesWritable.class);
//job.setOutputValueClass(KeyValue.class);
//job.setOutputFormatClass(HFileOutputFormat.class);
Scan scan = new Scan();
scan.setCaching(10);
scan.addFamily(INPUT_FAMILY);
TableMapReduceUtil.initTableMapperJob(inputTable, scan,
HFileOutputMapper.class, ImmutableBytesWritable.class, LongWritable.class, job);
//这里如果不定义reducer部分,会自动识别定义成KeyValueSortReducer.class 和PutSortReducer.class
job.setReducerClass(HFileOutputRedcuer.class);
//job.setOutputFormatClass(HFileOutputFormat.class);
HFileOutputFormat.configureIncrementalLoad(job, new HTable(
configuration, outputTable));
HFileOutputFormat.setOutputPath(job, new Path());
//FileOutputFormat.setOutputPath(job, new Path()); //等同上句
return job;
}
public static class HFileOutputMapper extends
TableMapper<ImmutableBytesWritable, LongWritable> {
public void map(ImmutableBytesWritable key, Result values,
Context context) throws IOException, InterruptedException {
//mapper逻辑部分
context.write(new ImmutableBytesWritable(Bytes()), LongWritable());
}
}
public static class HFileOutputRedcuer extends
Reducer<ImmutableBytesWritable, LongWritable, ImmutableBytesWritable, KeyValue> {
public void reduce(ImmutableBytesWritable key, Iterable<LongWritable> values,
Context context) throws IOException, InterruptedException {
//reducer逻辑部分
KeyValue kv = new KeyValue(row, OUTPUT_FAMILY, tmp[1].getBytes(),
Bytes.toBytes(count));
context.write(key, kv);
}
}
}
4、Refer:
1、Hbase几种数据入库(load)方式比较
http://blog.csdn.net/kirayuan/article/details/6371635
2、MapReduce生成HFile入库到HBase及源码分析
http://blog.pureisle.net/archives/1950.html
3、MapReduce生成HFile入库到HBase
http://shitouer.cn/2013/02/hbase-hfile-bulk-load/
HBase 写优化之 BulkLoad 实现数据快速入库的更多相关文章
- 【hbase】——HBase 写优化之 BulkLoad 实现数据快速入库
1.为何要 BulkLoad 导入?传统的 HTableOutputFormat 写 HBase 有什么问题? 我们先看下 HBase 的写流程: 通常 MapReduce 在写HBase时使用的是 ...
- hbase读写优化
一.hbase读优化 客户端优化 1.scan缓存是否设置合理? 优化原理:一次scan请求,实际并不会一次就将所有数据加载到本地,而是多次RPC请求进行加载.默认100条数据大小. 优化建议:大sc ...
- Hbase写数据,存数据,读数据的详细过程
Client写入 -> 存入MemStore,一直到MemStore满 -> Flush成一个StoreFile,直至增长到一定阈值 -> 出发Compact合并操作 -> 多 ...
- HBase性能优化方法总结(转)
本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,这里涉及的不多,这部分可以参考:淘宝Ken Wu同学的博客. 1. 表的设计 1.1 Pr ...
- hbase性能优化总结
hbase性能优化总结 1. 表的设计 1.1 Pre-Creating Regions 默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户端都 ...
- HBase篇--HBase常用优化
一.前述 HBase优化能够让我们对调优有一定的理解,当然企业并不是所有的优化全都用,优化还要根据业务具体实施. 二.具体优化 1.表的设计 1.1 预分区 默认情况下,在创建HBase表的时候会自 ...
- Hbase记录-HBase性能优化指南
垃圾回收优化当region服务器处理大量的写入负载时,繁重的任务会迫使JRE默认的内存分配策略无法保证程序的稳定性 所以我们可能需要对region服务器的垃圾回收机制进行一些参数调整(因为master ...
- Hbase框架原理及相关的知识点理解、Hbase访问MapReduce、Hbase访问Java API、Hbase shell及Hbase性能优化总结
转自:http://blog.csdn.net/zhongwen7710/article/details/39577431 本blog的内容包含: 第一部分:Hbase框架原理理解 第二部分:Hbas ...
- HBase性能优化方法总结(转)
原文链接:HBase性能优化方法总结(一):表的设计 本文主要是从HBase应用程序设计与开发的角度,总结几种常用的性能优化方法.有关HBase系统配置级别的优化,可参考:淘宝Ken Wu同学的博客. ...
随机推荐
- CF#328 (Div. 2) C(大数)
C. The Big Race time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- 网络知识===cookie 、session、JSESSIONID的区别
cookie .session ? 让我们用几个例子来描述一下cookie和session机制之间的区别与联系.笔者曾经常去的一家咖啡店有喝5杯咖啡免费赠一杯咖啡的优惠,然而一次性消费5杯咖啡的机会微 ...
- C#区分大小写
连属性也是要区分大小写的,如 获取数据长度 错误:strs.length 这样是报错的 正确:strs.Length
- vijos P1051 送给圣诞夜的极光
调了好久... #include <cstdio> #include <queue> using namespace std; char a[110*110]; /****** ...
- 搜索引擎--范例:SAE创建新应用,SVN管理代码
最初接触的平台是新浪SAE平台,虽然限制多得要命,速度也不怎么样,但无论怎么样,人家是“免费的”,免费的东西你还想怎么样?是不是? 1:注册登录新浪SAE,这个不用多说,相信你们的智商 2:创建一个新 ...
- python进程理论部分
一 什么是进程 进程:正在进行的一个过程或者说一个任务.而负责执行任务则是cpu. 举例(单核+多道,实现多个进程的并发执行): sxx在一个时间段内有很多任务要做:python备课的任务,写书的任务 ...
- hdu 5747(数学,贪心)
Aaronson Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total ...
- Chrome崩溃卡死
Chrome崩溃卡死主要是Flash崩溃导致,解决办法:1,chrome://plugins,停用Chrome自带的Flash插件:2,停用GPU加速.chrome://flags,停用对所有网页执行 ...
- ACM竞赛常用头文件模板-备忘
备忘. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> ...
- 【状压基础题】poj3254 Corn Fields
题目大意 :农夫约翰有n*m块地,其中一些地荒掉了.玉米是一种傲娇的植物,种在相邻的地里会导致不孕不育.求所有种法数对100000000求余. 读入:第一行一个n一个m, 接下来是一个n行m列的矩形, ...