CF870A Search for Pretty Integers
题意翻译
给出两个整数n,m,a数组有n个数,b数组有m个数。求一个数,这个数的每一位必须在a数组和b数组中至少出现过一次,求符合条件的数当中最小的数。
Translated by @我是lyy
题目描述
You are given two lists of non-zero digits.
Let's call an integer pretty if its (base 1010 ) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?
输入输出格式
输入格式:
The first line contains two integers nn and mm ( 1<=n,m<=91<=n,m<=9 ) — the lengths of the first and the second lists, respectively.
The second line contains nn distinct digits a_{1},a_{2},...,a_{n}a1,a2,...,an ( 1<=a_{i}<=91<=ai<=9 ) — the elements of the first list.
The third line contains mm distinct digits b_{1},b_{2},...,b_{m}b1,b2,...,bm ( 1<=b_{i}<=91<=bi<=9 ) — the elements of the second list.
输出格式:
Print the smallest pretty integer.
输入输出样例
说明
In the first example 2525 , 4646 , 2456724567 are pretty, as well as many other integers. The smallest among them is 2525 . 4242 and 2424are not pretty because they don't have digits from the second list.
In the second example all integers that have at least one digit different from 99 are pretty. It's obvious that the smallest among them is 11 , because it's the smallest positive integer.

#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int a[],b[];
int main(){
cin>>n>>m;
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=m;i++) scanf("%d",&b[i]);
sort(a+,a++n);
sort(b+,b++m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
if(a[i]==b[j]){
cout<<a[i]<<endl;
return ;
}
if(a[]>b[]) cout<<b[]*+a[]<<endl;
else cout<<a[]*+b[]<<endl;
}
CF870A Search for Pretty Integers的更多相关文章
- codeforces Round #440 A Search for Pretty Integers【hash/排序】
A. Search for Pretty Integers [题目链接]:http://codeforces.com/contest/872/problem/A time limit per test ...
- 【Codeforces Round #440 (Div. 2) A】 Search for Pretty Integers
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 先枚举一个数字的情况. 再枚举两个数的情况就好. [代码] #include <bits/stdc++.h> #defi ...
- Codeforces Round #440 (Div. 2) A,B,C
A. Search for Pretty Integers time limit per test 1 second memory limit per test 256 megabytes input ...
- Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2)
A. Search for Pretty Integers 题目链接:http://codeforces.com/contest/872/problem/A 题目意思:题目很简单,找到一个数,组成这个 ...
- Codeforces Round #440 (Div. 2)【A、B、C、E】
Codeforces Round #440 (Div. 2) codeforces 870 A. Search for Pretty Integers(水题) 题意:给两个数组,求一个最小的数包含两个 ...
- Codeforces Contest 870 前三题KEY
A. Search for Pretty Integers: 题目传送门 题目大意:给定N和M个数,从前一个数列和后一个数列中各取一个数,求最小值,相同算一位数. 一道水题,读入A.B数组后枚举i.j ...
- ACM-ICPC (10/15) Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2)
A. Search for Pretty Integers You are given two lists of non-zero digits. Let's call an integer pret ...
- [LeetCode] Search a 2D Matrix II 搜索一个二维矩阵之二
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...
- [LeetCode] Search a 2D Matrix 搜索一个二维矩阵
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...
随机推荐
- 《linux 内核全然剖析》 笔记 CODE_SPACE 宏定义分析
在memory.c里面.遇到一个宏定义,例如以下: #define CODE_SPACE(addr) ((((addr)+4095)&~4095) < \ current->sta ...
- 【联系】二项分布的对数似然函数与交叉熵(cross entropy)损失函数
1. 二项分布 二项分布也叫 0-1 分布,如随机变量 x 服从二项分布,关于参数 μ(0≤μ≤1),其值取 1 和取 0 的概率如下: {p(x=1|μ)=μp(x=0|μ)=1−μ 则在 x 上的 ...
- 48.自用qss
/* R1 */ QDialog { background-image: url(:/images/background.png); } /* R2 */ QLabel { font: 9pt; co ...
- Python中断言与异常的区别
异常,在程序运行时出现非正常情况时会被抛出,比如常见的名称错误.键错误等. 异常: >>> s Traceback (most recent call last): File &qu ...
- RabbitMQ(三) 集群配置
RabbitMQ--集群配置 之前不管是搞Redis.SQL.Mongo还是其他的东西,一律都没说过集群要怎么搞,电脑实在是带不动.说透彻点就是懒,懒得搭也懒得写,今日深刻意识到错误,做学问是不能懒的 ...
- [XJOI]noip43 T2多人背包
多人背包 DD 和好朋友们要去爬山啦!他们一共有 K 个人,每个人都会背一个包.这些包的容量是相同的,都是 V.可以装进背包里的一共有 N 种物品,每种物品都有给定的体积和价值.在 DD 看来,合理的 ...
- (C++)错误提示 c2352 :非静态成员函数的非法调用
静态成员函数相当于全局函数,只是有一个类名字空间的限制.而类成员函数是成员内部的函数,同一个类的对象实例可以有很多,每一个实例都有自已不同的成员变量值,成员函数一般都是对成员自已的成员变量值在操作.所 ...
- 获取远程请求的IP地址、本机Mac地址和客户端Mac地址
我在近期项目里面去记录异常日志时,用到了这两个地址,也是从网上和前辈那里学习到的,本人项目是MVC框架的,自己整理了一个公共方法类,包括获取远程客户端IP和Mac地址,以及获取本机Mac地址的方法,代 ...
- winFrom线程
方法--->委托--->BeginInvoke用指定的参数异步执行委托 委托就是我想做什么,而你可以作什么,我就让你去做.
- meta标签的作用及整理
[转载] meta的标签的使用是我在前端学习中曾经困惑过一段时间的问题.一方面不是很了解meta标签的用途,另一方面是对于meta标签里的属性和值不是懂,也不知道从哪里冒出来的,所以这篇文章专门整理下 ...