ROS:ubuntuKylin17.04-Ros使用OrbSLAM2
忙于图像处理和DCNN,很长时间不使用ROS,重新安装系统后,再次使用ORB-SLAM2(ROS)进行三维重建和实时追踪的演示。
参考以前的文章:ROS:ubuntu-Ros使用OrbSLAM
ORB-SLAM2(ROS)的GitHub链接:
raulmur的主页:https://github.com/raulmur/
ORB-SLAM2使用了RGB_D相机,可以在Kinect收集得到的数据集上进行演示。
转述一下ORB-SLAM2的教程
一.ORB-SLAM2 安装
Authors: Raul Mur-Artal, Juan D. Tardos, J. M. M. Montiel and Dorian Galvez-Lopez (DBoW2)
13 Jan 2017: OpenCV 3 and Eigen 3.3 are now supported.
22 Dec 2016: Added AR demo (see section 7).
ORB-SLAM2 is a real-time SLAM library for Monocular,
Stereo and RGB-D cameras that computes the camera trajectory and a sparse 3D reconstruction (in the stereo and RGB-D case with true scale). It is able to detect loops and relocalize the camera in real time. We provide examples to run
the SLAM system in the KITTI dataset as stereo or monocular, in the TUM dataset as RGB-D or monocular, and in the EuRoC dataset as stereo or monocular. We also provide a ROS node to process live monocular, stereo or RGB-D streams.The library can be compiled without ROS. ORB-SLAM2 provides a GUI to change between aSLAM Mode andLocalization
Mode, see section 9 of this document.
###Related Publications:
[Monocular] Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System.IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015. (2015 IEEE Transactions on Robotics
Best Paper Award).PDF.
[Stereo and RGB-D] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras.ArXiv preprint arXiv:1610.06475PDF.
[DBoW2 Place Recognizer] Dorian Gálvez-López and Juan D. Tardós. Bags of Binary Words for Fast Place Recognition in Image Sequences.IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188-1197, 2012.PDF
#1. License
ORB-SLAM2 is released under a GPLv3 license. For a list of all code/library dependencies (and associated licenses), please seeDependencies.md.
For a closed-source version of ORB-SLAM2 for commercial purposes, please contact the authors: orbslam (at) unizar (dot) es.
If you use ORB-SLAM2 (Monocular) in an academic work, please cite:
@article{murTRO2015,
title={{ORB-SLAM}: a Versatile and Accurate Monocular {SLAM} System},
author={Mur-Artal, Ra\'ul, Montiel, J. M. M. and Tard\'os, Juan D.},
journal={IEEE Transactions on Robotics},
volume={31},
number={5},
pages={1147--1163},
doi = {10.1109/TRO.2015.2463671},
year={2015}
}
if you use ORB-SLAM2 (Stereo or RGB-D) in an academic work, please cite:
@article{murORB2,
title={{ORB-SLAM2}: an Open-Source {SLAM} System for Monocular, Stereo and {RGB-D} Cameras},
author={Mur-Artal, Ra\'ul and Tard\'os, Juan D.},
journal={arXiv preprint arXiv:1610.06475},
year={2016}
}
#2. PrerequisitesWe have tested the library in Ubuntu 12.04,
14.04 and 16.04, but it should be easy to compile in other platforms. A powerful computer (e.g. i7) will ensure real-time performance and provide more stable and accurate results.
C++11 or C++0x Compiler
We use the new thread and chrono functionalities of C++11.
Pangolin
We use Pangolin for visualization and user interface. Dowload and install instructions can be found at:https://github.com/stevenlovegrove/Pangolin.
OpenCV
We use OpenCV to manipulate images and features. Dowload and install instructions can be found at:http://opencv.org.Required
at leat 2.4.3. Tested with OpenCV 2.4.11 and OpenCV 3.2.
Eigen3
Required by g2o (see below). Download and install instructions can be found at:http://eigen.tuxfamily.org.Required at least 3.1.0.
DBoW2 and g2o (Included in Thirdparty folder)
We use modified versions of the DBoW2 library to perform place recognition and g2o library to perform non-linear optimizations. Both modified libraries (which are BSD) are included in theThirdparty folder.
ROS (optional)
We provide some examples to process the live input of a monocular, stereo or RGB-D camera usingROS. Building these examples is optional. In case you want
to use ROS, a version Hydro or newer is needed.
#3. Building ORB-SLAM2 library and TUM/KITTI examples
Clone the repository:
git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2
We provide a script build.sh to build the Thirdparty libraries andORB-SLAM2. Please make sure you have installed all required dependencies (see section 2). Execute:
cd ORB_SLAM2
chmod +x build.sh
./build.sh
注意事项:安装附加依赖库...
出错及解决方法:
在
./build.sh
过程的最后
sudo make -j
出现 usleep 未定义问题
解决方法:
找到所有包含这个函数的源代码
在 头部添加:
#include <unistd.h>
则可以编译成功Q!
This will create libORB_SLAM2.so at lib folder and the executablesmono_tum,mono_kitti,rgbd_tum,stereo_kitti,mono_euroc andstereo_euroc
inExamples folder.
#4. Monocular Examples
二.例程和数据集
TUM Dataset
Download a sequence from http://vision.in.tum.de/data/datasets/rgbd-dataset/download and uncompress it.
Execute the following command. Change
TUMX.yamlto TUM1.yaml,TUM2.yaml or TUM3.yaml for freiburg1, freiburg2 and freiburg3 sequences respectively. ChangePATH_TO_SEQUENCE_FOLDERto the uncompressed sequence folder.
./Examples/Monocular/mono_tum Vocabulary/ORBvoc.txt Examples/Monocular/TUMX.yaml PATH_TO_SEQUENCE_FOLDER
注释:慕尼黑工业大学 TUM数据集给出了相应的软件工具集:http://vision.in.tum.de/data/software 。
数据集(3D场景)下载地址:http://vision.in.tum.de/data/datasets/omni-lsdslam#dataset
KITTI Dataset
Download the dataset (grayscale images) from http://www.cvlibs.net/datasets/kitti/eval_odometry.php
Execute the following command. Change
KITTIX.yamlby KITTI00-02.yaml, KITTI03.yaml or KITTI04-12.yaml for sequence 0 to 2, 3, and 4 to 12 respectively. ChangePATH_TO_DATASET_FOLDERto the uncompressed dataset folder. ChangeSEQUENCE_NUMBER
to 00, 01, 02,.., 11.
./Examples/Monocular/mono_kitti Vocabulary/ORBvoc.txt Examples/Monocular/KITTIX.yaml PATH_TO_DATASET_FOLDER/dataset/sequences/SEQUENCE_NUMBER
里程数据集:大型户外数据集合
EuRoC Dataset
Download a sequence (ASL format) from http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
Execute the following first command for V1 and V2 sequences, or the second command for MH sequences. Change PATH_TO_SEQUENCE_FOLDER and SEQUENCE according to the sequence you want to run.
./Examples/Monocular/mono_euroc Vocabulary/ORBvoc.txt Examples/Monocular/EuRoC.yaml PATH_TO_SEQUENCE_FOLDER/mav0/cam0/data Examples/Monocular/EuRoC_TimeStamps/SEQUENCE.txt
./Examples/Monocular/mono_euroc Vocabulary/ORBvoc.txt Examples/Monocular/EuRoC.yaml PATH_TO_SEQUENCE/cam0/data Examples/Monocular/EuRoC_TimeStamps/SEQUENCE.txt
#5. Stereo Examples
Micro Aerial Vehicle :用于室内无人机进行场景建模的数据集合
KITTI Dataset
Download the dataset (grayscale images) from http://www.cvlibs.net/datasets/kitti/eval_odometry.php
Execute the following command. Change
KITTIX.yamlto KITTI00-02.yaml, KITTI03.yaml or KITTI04-12.yaml for sequence 0 to 2, 3, and 4 to 12 respectively. ChangePATH_TO_DATASET_FOLDERto the uncompressed dataset folder. ChangeSEQUENCE_NUMBER
to 00, 01, 02,.., 11.
./Examples/Stereo/stereo_kitti Vocabulary/ORBvoc.txt Examples/Stereo/KITTIX.yaml PATH_TO_DATASET_FOLDER/dataset/sequences/SEQUENCE_NUMBER
EuRoC Dataset
Download a sequence (ASL format) from http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets
Execute the following first command for V1 and V2 sequences, or the second command for MH sequences. Change PATH_TO_SEQUENCE_FOLDER and SEQUENCE according to the sequence you want to run.
./Examples/Stereo/stereo_euroc Vocabulary/ORBvoc.txt Examples/Stereo/EuRoC.yaml PATH_TO_SEQUENCE/mav0/cam0/data PATH_TO_SEQUENCE/mav0/cam1/data Examples/Stereo/EuRoC_TimeStamps/SEQUENCE.txt
./Examples/Stereo/stereo_euroc Vocabulary/ORBvoc.txt Examples/Stereo/EuRoC.yaml PATH_TO_SEQUENCE/cam0/data PATH_TO_SEQUENCE/cam1/data Examples/Stereo/EuRoC_TimeStamps/SEQUENCE.txt
#6. RGB-D Example
TUM Dataset
Download a sequence from http://vision.in.tum.de/data/datasets/rgbd-dataset/download and uncompress it.
Associate RGB images and depth images using the python script associate.py. We already provide associations for some of the sequences in
Examples/RGB-D/associations/. You can generate your own associations file executing:
python associate.py PATH_TO_SEQUENCE/rgb.txt PATH_TO_SEQUENCE/depth.txt > associations.txt
- Execute the following command. Change
TUMX.yamlto TUM1.yaml,TUM2.yaml or TUM3.yaml for freiburg1, freiburg2 and freiburg3 sequences respectively. ChangePATH_TO_SEQUENCE_FOLDERto the uncompressed sequence folder. ChangeASSOCIATIONS_FILE
to the path to the corresponding associations file.
./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUMX.yaml PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE
#7. ROS Examples
Building the nodes for mono, monoAR,
stereo and RGB-D
- Add the path including Examples/ROS/ORB_SLAM2 to the ROS_PACKAGE_PATH environment variable. Open .bashrc file and add at the end the following line. Replace PATH by the folder where you cloned ORB_SLAM2:
export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH}:PATH/ORB_SLAM2/Examples/ROS
- Execute
build_ros.shscript:
chmod +x build_ros.sh
./build_ros.sh
Running Monocular Node
For a monocular input from topic /camera/image_raw run node ORB_SLAM2/Mono. You will need to provide the vocabulary file and a settings file. See the monocular examples above.
rosrun ORB_SLAM2 Mono PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE
Running Monocular Augmented Reality Demo
This is a demo of augmented reality where you can use an interface to insert virtual cubes in planar regions of the scene.The node reads images from topic/camera/image_raw.
rosrun ORB_SLAM2 MonoAR PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE
Running Stereo Node
For a stereo input from topic /camera/left/image_raw and /camera/right/image_raw run node ORB_SLAM2/Stereo. You will need to provide the vocabulary file and a settings file. If youprovide rectification matrices
(see Examples/Stereo/EuRoC.yaml example), the node will recitify the images online,otherwise images must be pre-rectified.
rosrun ORB_SLAM2 Stereo PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE ONLINE_RECTIFICATION
Example: Download a rosbag (e.g. V1_01_easy.bag) from the EuRoC dataset (http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets).
Open 3 tabs on the terminal and run the following command at each tab:
roscore
rosrun ORB_SLAM2 Stereo Vocabulary/ORBvoc.txt Examples/Stereo/EuRoC.yaml true
rosbag play --pause V1_01_easy.bag /cam0/image_raw:=/camera/left/image_raw /cam1/image_raw:=/camera/right/image_raw
Once ORB-SLAM2 has loaded the vocabulary, press space in the rosbag tab. Enjoy!. Note: a powerful computer is required to run the most exigent sequences of this dataset.
Running RGB_D Node
For an RGB-D input from topics /camera/rgb/image_raw and /camera/depth_registered/image_raw, run node ORB_SLAM2/RGBD. You will need to provide the vocabulary file and a settings file. See the RGB-D example above.
rosrun ORB_SLAM2 RGBD PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE
#8. Processing your own sequencesYou will need to create a settings file with the calibration of your camera. See the settings file provided for the TUM and KITTI datasets for monocular, stereo and RGB-D cameras. We use the calibration model of OpenCV. See
the examples to learn how to create a program that makes use of the ORB-SLAM2 library and how to pass images to the SLAM system. Stereo input must be synchronized and rectified. RGB-D input must be synchronized and depth registered.
#9. SLAM and Localization ModesYou can change between the SLAM and
Localization mode using the GUI of the map viewer.
SLAM Mode
This is the default mode. The system runs in parallal three threads: Tracking, Local Mapping and Loop Closing. The system localizes the camera, builds new map and tries to close loops.
Localization Mode
This mode can be used when you have a good map of your working area. In this mode the Local Mapping and Loop Closing are deactivated. The system localizes the camera in the map (which is no longer updated), using relocalization if needed.
ROS:ubuntuKylin17.04-Ros使用OrbSLAM2的更多相关文章
- ROS:使用ubuntuKylin17.04安装ROS赤xi龟
使用ubuntuKylin17.04安装 参考了此篇文章:SLAM: Ubuntu16.04安装ROS-kinetic 重复官方链接的步骤也没有成功. 此后发现4.10的内核,不能使用Kinetic. ...
- Ubuntu 16.04 + ROS Kinetic 机器人操作系统学习镜像分享与使用安装说明
Ubuntu 16.04 + ROS Kinetic 镜像分享与使用安装说明 内容概要:1 网盘文件介绍 2 镜像制作 3 系统使用与安装 ---- 祝ROS爱好者和开发者新年快乐:-) ---- ...
- ubuntu16.04 ROS环境下配置和运行SVO
ubuntu16.04 ROS环境下配置和运行SVO https://blog.csdn.net/nnUyi/article/details/78005552
- Ubuntu16.04 + ROS下串口通讯
本文参考https://blog.csdn.net/weifengdq/article/details/84374690 由于工程需要,需要Ubuntu16.04 + ROS与STM32通讯,主要有两 ...
- Ubuntu14.04+ROS 启动本地摄像头
STEP1安装usb_cam 创建一个工作空间,make一下 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/ catkin_make STEP2下面是安装usb_c ...
- Ubuntu 16.04 ROS环境配置
最近新入职一家公司,是搞智能无人驾驶的,用的操作系统是Ubuntu和ros,之前没接触过ros系统,既然公司用那就必须的学习啊,话不多说先装它一个ros玩玩... 1. Ubuntu 安装 ROS K ...
- Learning ROS: Ubuntu16.04下kinetic开发环境安装和初体验 Install + Configure + Navigating(look around) + Creating a Package(catkin_create_pkg) + Building a Package(catkin_make) + Understanding Nodes
本文主要部分来源于ROS官网的Tutorials. Ubuntu install of ROS Kinetic # Setup your sources.list sudo sh -c 'echo & ...
- SLAM+语音机器人DIY系列:(二)ROS入门——1.ROS是什么
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- SLAM+语音机器人DIY系列:(二)ROS入门——2.ROS系统整体架构
摘要 ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便.我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS ...
- ROS Learning-009 beginner_Tutorials ROS服务 和 ROS参数
ROS Indigo beginner_Tutorials-08 ROS服务 和 ROS参数 我使用的虚拟机软件:VMware Workstation 11 使用的Ubuntu系统:Ubuntu 14 ...
随机推荐
- BUPT2017 wintertraining(15) #9
下面不再说明题意了请自行读题,直接放contest链接. https://vjudge.net/contest/151607 A.考虑当火车隔k站一停时 区间长度 >= k 的纪念品一定能买到 ...
- Html学习总结(2)——Html页面head标签元素的意义和应用场景
相信在html5之前,很少人会关注html页面上head里标签元素的定义和应用场景,可能记得住的只有"title"."keyword"和"descri ...
- hdu 4975 最大流解决行列和求矩阵问题,用到矩阵dp优化
//刚开始乱搞. //网络流求解,如果最大流=所有元素的和则有解:利用残留网络判断是否唯一, //方法有两种,第一种是深搜看看是否存在正边权的环,见上一篇4888 //至少四个点构成的环,第二种是用矩 ...
- [poj2417]Discrete Logging_BSGS
Discrete Logging poj-2417 题目大意:求$a^x\equiv b(mod\qquad c)$ 注释:O(分块可过) 想法:介绍一种算法BSGS(Baby-Step Giant- ...
- ELECTRON新增模块的方法
因为electron和node.js用的V8版本不一致,所以直接使用npm安装的模块可能在electron中不可用,特别是使用c.c++开发的模块.官方的说明:https://github.com/e ...
- Android开发趣事记之周期性广告
前些天做了一个应用,由于怕影响用户体验,所以我将广告设定了一下,就是每启动软件8次.就会弹出一次广告. 在上传到应用宝后.竟然得到了这种结果: 看到了吧.无病毒,无广告. 看来审核人员是不会把应用连续 ...
- Photon + Unity3D 线上游戏开发 学习笔记(四)
这一节 我们建立 photon Server 端的框架 一个最简单的Photon框架 就包括一个 Applocation 类 和 一个 peer 类,作用例如以下: * Application 类是 ...
- 剑指Offer——面试小提示(持续更新中)
(1)应聘者在电话面试的时候应尽可能用形象的语言把细节说清楚. (2)假设在英语面试时没有听清或没有听懂面试官的问题,应聘者要敢于说Pardon. (3)在共享桌面远程面试中.面试官最关心的是应聘者的 ...
- 微信小程序初探(二、分页数据请求)
大家好 波哥小猿又来啦[斜眼笑],昨天咱们讲了微信小程序简单数据请求,有没有照着教程实现请求的同学们啦 实现的同学举个爪[笑脸].哈哈,好了不扯犊子啦,我相信有的同学已经实现了简单的数据请求,没有实现 ...
- glance rabbit