FFT模板,原理不难,优质讲解很多,但证明很难看太不懂

这模板题在bzoj竟然是土豪题,服了

 #include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define dd double
#define ll long long
#define N (1<<21)+10
using namespace std; int n,m,ma;
int r[N];
dd const pi=acos(-);
struct cp{
dd x,y;
cp(dd a,dd b):x(a),y(b){}
cp(){}
cp operator+(const cp &a){return cp(x+a.x,y+a.y);}
cp operator-(const cp &a){return cp(x-a.x,y-a.y);}
cp operator*(const cp &a){return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
}a[N],b[N],c[N];
void FFT(cp s[],int len,int type)
{
for(int i=;i<len;i++)
if(i<r[i]) swap(s[i],s[r[i]]);
for(int k=;k<=len;k<<=)
{
cp wn(cos(*pi*type/k),sin(*pi*type/k));
for(int i=;i<len;i+=k)
{
cp t,w(,);
for(int j=;j<(k>>);j++,w=w*wn)
{
t=w*s[i+j+(k>>)];
s[i+j+(k>>)]=s[i+j]-t;
s[i+j]=s[i+j]+t;
}
}
}
}
void FFT_main(cp A[],cp B[],cp C[],int len)
{
FFT(A,len,);FFT(B,len,);
for(int i=;i<len;i++) C[i]=A[i]*B[i];
FFT(C,len,-);
} int gc()
{
int rett=,fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){rett=(rett<<)+(rett<<)+c-'';c=getchar();}
return rett*fh;
} int main()
{
n=gc(),m=gc(),ma=,n++,m++;
for(int i=;i<n;i++) a[i].x=1.0*gc();
for(int i=;i<m;i++) b[i].x=1.0*gc();
while((<<ma)<n+m){ma++;}
for(int i=;i<(<<ma);i++)
r[i]=(r[i>>]>>)|((i&)<<(ma-));
FFT_main(a,b,c,<<ma);
for(int i=;i<n+m-;i++) printf("%d ",(int)(c[i].x/(<<ma)+0.1));
return ;
}

模板 FFT 快速傅里叶变换的更多相关文章

  1. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  2. FFT 快速傅里叶变换 学习笔记

    FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...

  3. CQOI2018 九连环 打表找规律 fft快速傅里叶变换

    题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...

  4. 模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)

    先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #incl ...

  5. FFT —— 快速傅里叶变换

    问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...

  6. [C++] 频谱图中 FFT快速傅里叶变换C++实现

    在项目中,需要画波形频谱图,因此进行查找,不是很懂相关知识,下列代码主要是针对这篇文章. http://blog.csdn.net/xcgspring/article/details/4749075 ...

  7. matlab中fft快速傅里叶变换

    视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...

  8. 模板:快速傅里叶变换(FFT)

    参考:http://blog.csdn.net/f_zyj/article/details/76037583 如果公式炸了请去我的csdn博客:http://blog.csdn.net/luyouqi ...

  9. FFT(快速傅里叶变换) 模板

    洛谷 P3803 [模板]多项式乘法(FFT)传送门 存个板子,完全弄懂之后找机会再写个详解. #include<cstdio> #include<cmath> struct ...

随机推荐

  1. PHP做的简单计算器

    使用php做的简易计算器 能够进行+,-,*,/运算. 如下图 <?php if (isset($_POST['button'])) { $num1 = $_POST['num1']; $num ...

  2. 【hiho一下第十二周】刷油漆

    [题目链接]:http://hihocoder.com/problemset/problem/1055 [题意] [题解] 设f[x][i]表示以第x个节点为根的子树; 不选x这个节点,然后子树里面选 ...

  3. [置顶] 大数据架构hadoop

    摘要:Admaster数据挖掘总监 随着互联网.移动互联网和物联网的发展,谁也无法否认,我们已经切实地迎来了一个海量数据的时代,数据调查公司IDC预计2011年的数据总量将达到1.8万亿GB,对这些海 ...

  4. switch 的穿透, 以及穿透利用

    switch 穿透测试: outputs: 添加break 阻止switch穿透: outputs: 利用switch的穿透功能:

  5. [Linux]第三部分-学习Shell和Shell脚本

    vim 高级的 vii o a 进入编辑模式 esc进入一般模式:wq离开alias vi='vim' 使用vim打开viv块选择 y复制反白,d删除反白在vi中打开一个文件后,可以使用 sp fil ...

  6. thrift java示例

    thrift java示例 使用IntelliJ IDEA作为开发工具: 增加proto文件夹,里面写上sayHello.proto syntax = "proto3"; opti ...

  7. Java进化? Kotlin初探与集成Android项目

    欢迎Follow我的GitHub, 关注我的CSDN. Kotlin是基于JVM的编程语言, 由JetBrains公司开发, 眼下已经开源. IntelliJ IDEA, PyCharm, Andro ...

  8. canvas绘制爱心

    需求:绘制爱心图像轨迹. 实现:直接贴代码吧! 预览地址:https://codepen.io/wzc570738205/pen/dqqBpj <!DOCTYPE> <html> ...

  9. Linux uname 命令 打印系统信息

    转自:https://www.jb51.net/LINUXjishu/417626.html 1.概述 打印系统信息 2.命令格式 uname [OPTION]... 3.常用命令参数 打印一些系统信 ...

  10. 11.QT窗口布局切割

    int main(int argc, char *argv[]) { QApplication a(argc, argv); //MainWindow w; //w.show(); //左右分割 7 ...