FFT模板,原理不难,优质讲解很多,但证明很难看太不懂

这模板题在bzoj竟然是土豪题,服了

 #include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define dd double
#define ll long long
#define N (1<<21)+10
using namespace std; int n,m,ma;
int r[N];
dd const pi=acos(-);
struct cp{
dd x,y;
cp(dd a,dd b):x(a),y(b){}
cp(){}
cp operator+(const cp &a){return cp(x+a.x,y+a.y);}
cp operator-(const cp &a){return cp(x-a.x,y-a.y);}
cp operator*(const cp &a){return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
}a[N],b[N],c[N];
void FFT(cp s[],int len,int type)
{
for(int i=;i<len;i++)
if(i<r[i]) swap(s[i],s[r[i]]);
for(int k=;k<=len;k<<=)
{
cp wn(cos(*pi*type/k),sin(*pi*type/k));
for(int i=;i<len;i+=k)
{
cp t,w(,);
for(int j=;j<(k>>);j++,w=w*wn)
{
t=w*s[i+j+(k>>)];
s[i+j+(k>>)]=s[i+j]-t;
s[i+j]=s[i+j]+t;
}
}
}
}
void FFT_main(cp A[],cp B[],cp C[],int len)
{
FFT(A,len,);FFT(B,len,);
for(int i=;i<len;i++) C[i]=A[i]*B[i];
FFT(C,len,-);
} int gc()
{
int rett=,fh=;char c=getchar();
while(c<''||c>''){if(c=='-')fh=-;c=getchar();}
while(c>=''&&c<=''){rett=(rett<<)+(rett<<)+c-'';c=getchar();}
return rett*fh;
} int main()
{
n=gc(),m=gc(),ma=,n++,m++;
for(int i=;i<n;i++) a[i].x=1.0*gc();
for(int i=;i<m;i++) b[i].x=1.0*gc();
while((<<ma)<n+m){ma++;}
for(int i=;i<(<<ma);i++)
r[i]=(r[i>>]>>)|((i&)<<(ma-));
FFT_main(a,b,c,<<ma);
for(int i=;i<n+m-;i++) printf("%d ",(int)(c[i].x/(<<ma)+0.1));
return ;
}

模板 FFT 快速傅里叶变换的更多相关文章

  1. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  2. FFT 快速傅里叶变换 学习笔记

    FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a ...

  3. CQOI2018 九连环 打表找规律 fft快速傅里叶变换

    题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 4 ...

  4. 模板 - 数学 - 快速傅里叶变换/快速数论变换(FFT/NTT)

    先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #incl ...

  5. FFT —— 快速傅里叶变换

    问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们 ...

  6. [C++] 频谱图中 FFT快速傅里叶变换C++实现

    在项目中,需要画波形频谱图,因此进行查找,不是很懂相关知识,下列代码主要是针对这篇文章. http://blog.csdn.net/xcgspring/article/details/4749075 ...

  7. matlab中fft快速傅里叶变换

    视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/ ...

  8. 模板:快速傅里叶变换(FFT)

    参考:http://blog.csdn.net/f_zyj/article/details/76037583 如果公式炸了请去我的csdn博客:http://blog.csdn.net/luyouqi ...

  9. FFT(快速傅里叶变换) 模板

    洛谷 P3803 [模板]多项式乘法(FFT)传送门 存个板子,完全弄懂之后找机会再写个详解. #include<cstdio> #include<cmath> struct ...

随机推荐

  1. [luogu3627 APIO2009] 抢掠计划 (tarjan缩点+spfa最长路)

    传送门 Description Input 第一行包含两个整数 N.M.N 表示路口的个数,M 表示道路条数.接下来 M 行,每行两个整数,这两个整数都在 1 到 N 之间,第 i+1 行的两个整数表 ...

  2. Vue.js 渲染简写样式存在的问题

    引出问题 首先我们来这么一个问题, 这里是完整的 jsfiddle demo or codepen demo 给一个元素绑定两个边框样式, 右侧和底部都为1px的红色边框 styleA: { bord ...

  3. 【hiho一下第二周 】Trie树

    [题目链接]:http://hihocoder.com/problemset/problem/1014 [题意] [题解] 在字典树的域里面加一个信息cnt; 表示这个节点下面,记录有多少个单词; 在 ...

  4. Spring学习总结(17)——Spring AOP权限管理

    每个项目都会有权限管理系统 无论你是一个简单的企业站,还是一个复杂到爆的平台级项目,都会涉及到用户登录.权限管理这些必不可少的业务逻辑.有人说,企业站需要什么权限管理阿?那行吧,你那可能叫静态页面,就 ...

  5. HDU3236 Gift Hunting

    /* HDU3236 Gift Hunting http://acm.hdu.edu.cn/showproblem.php?pid=3236 dp 滚动数组 * * */ #include <c ...

  6. android一个弹出菜单的动画(一)

    先上效果图: 先写Layout文件: <?xml version="1.0" encoding="utf-8"? > <RelativeLay ...

  7. 【PLSQL】触发器trigger类型,状态,參数

    ************************************************************************   ****原文:blog.csdn.net/clar ...

  8. DOM基础----DOM(一)

    DOM(Document Object Model),中文名称为文档对象模型.是处理可扩展标识语言的标准编程接口,主要针对HTML和XML.DOM描绘了一个层次化的节点树,开发者能够加入.改动和移除页 ...

  9. 2016.03.02,英语,《Vocabulary Builder》Unit 03

    ambi/amphi: 指on both sides或者around的意思,ambi-来自拉丁语,amphi-来自希腊语.ambidextrous:[ˌæmbi'dekstrəs] adj. 两手俱利 ...

  10. Oracle 11g 学习3——表空间操作

    一.表空间概述 表空间是Oracle中最大的逻辑存储结构,与操作系统中的数据文件相相应: 基本表空间:一般指用户使用的永久性表空间,用于存储用户的永久性数据          暂时表空间: 主要用于存 ...