Sightseeing Trip

Time Limit: 2000ms
Memory Limit: 16384KB

This problem will be judged on Ural. Original ID: 1004
64-bit integer IO format: %lld      Java class name: (Any)

 
There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place.
Your task is to write a program which finds such a route. In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y1, …, ykk > 2. The road yi(1 ≤ i ≤ k − 1) connects crossing points xi and xi+1, the road yk connects crossing points xk and x1. All the numbers x1, …, xk should be different. The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y1) + L(y2) + … + L(yk) where L(yi) is the length of the road yi (1 ≤ i ≤ k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible, because there is no sightseeing route in the town.
 

Input

Input contains a series of tests. The first line of each test contains two positive integers: the number of crossing points N ≤ 100 and the number of roads M ≤ 10000. Each of the nextM lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500). Input is ended with a “−1” line.
 

Output

Each line of output is an answer. It contains either a string “No solution.” in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x1 to xk from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.
 

Sample Input

5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20
4 3
1 2 10
1 3 20
1 4 30
-1

Sample Output

1 3 5 2
No solution.

Source

 
解题:Floyd 求最小环
 
 #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = ;
int n,m,d[maxn][maxn],w[maxn][maxn],fa[maxn][maxn];
vector<int>cycle;
int Floyd() {
int minCycle = INF;
for(int k = ; k <= n; ++k) {
for(int i = ; i < k; ++i)
for(int j = i + ; j < k && w[i][k] < INF; ++j) {
int tmp = d[i][j] + w[i][k] + w[k][j];
if(tmp < minCycle) {
minCycle = tmp;
cycle.clear();
int p = j;
while(p != i) {
cycle.push_back(p);
p = fa[i][p];
}
cycle.push_back(i);
cycle.push_back(k);
}
}
for(int i = ; i <= n; ++i)
for(int j = ; j <= n && d[i][k] < INF; ++j) {
int tmp = d[i][k] + d[k][j];
if(tmp < d[i][j]) {
d[i][j] = tmp;
fa[i][j] = fa[k][j];
}
}
}
return minCycle;
}
int main() {
int u,v,ww;
while(~scanf("%d",&n)) {
if(n == -) return ;
scanf("%d",&m);
for(int i = ; i < maxn; ++i)
for(int j = ; j < maxn; ++j) {
d[i][j] = w[i][j] = INF;
fa[i][j] = i;
}
while(m--) {
scanf("%d%d%d",&u,&v,&ww);
ww = min(ww,w[u][v]);
w[u][v] = w[v][u] = d[u][v] = d[v][u] = ww;
}
if(Floyd() == INF) puts("No solution.");
else {
printf("%d",cycle[]);
for(int i = ; i < cycle.size(); ++i)
printf(" %d",cycle[i]);
putchar('\n');
}
}
return ;
}

Ural 1004 Sightseeing Trip的更多相关文章

  1. URAL 1004 Sightseeing Trip(最小环)

    Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town ...

  2. URAL 1004 Sightseeing Trip(floyd求最小环+路径输出)

    https://vjudge.net/problem/URAL-1004 题意:求路径最小的环(至少三个点),并且输出路径. 思路: 一开始INF开大了...无限wa,原来相加时会爆int... 路径 ...

  3. poj1734 Sightseeing trip【最小环】

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:8588   Accepted:3224   ...

  4. 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd

    题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...

  5. poj 1734 Sightseeing trip判断最短长度的环

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5590   Accepted: 2151 ...

  6. 【poj1734】Sightseeing trip

    Sightseeing trip Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8520   Accepted: 3200 ...

  7. POJ 1734:Sightseeing trip

    Sightseeing trip Time Limit: 1000MS Memory Limit: 65536K Total Submissions: Accepted: Special Judge ...

  8. [CEOI1999]Sightseeing trip(Floyed)

    [CEOI1999]Sightseeing trip Description There is a travel agency in Adelton town on Zanzibar island. ...

  9. 「POJ1734」Sightseeing trip

    「POJ1734」Sightseeing trip 传送门 这题就是要我们求一个最小环并且按顺序输出一组解. 考虑 \(O(n^3)\) 地用 \(\text{Floyd}\) 求最小环: 考虑 \( ...

随机推荐

  1. 2015 Multi-University Training Contest 6 hdu 5357 Easy Sequence

    Easy Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  2. C#中的Attribute Property区别

    Attribute 一般译作"特性",Property 仍然译为"属性". Attribute 是一种可由用户自由定义的修饰符(Modifier),可以用来修饰 ...

  3. POJ 2470 Ambiguous permutations(简单题 理解题意)

    [题目简述]:事实上就是依据题目描写叙述:A permutation of the integers 1 to n is an ordering of these integers. So the n ...

  4. 0x07 贪心

    被虐爆了...贪心这种玄学东西还可以证吗??除了范围缩放算是可以想想比较经典(倍增第一题?)... poj3614:这道题想了很久,并没有想到是把minSPF按大到小排序,一直的思想是小的就小到大排序 ...

  5. [jzoj 6101] [GDOI2019模拟2019.4.2] Path 解题报告 (期望)

    题目链接: https://jzoj.net/senior/#main/show/6101 题目: 题解: 设$f_i$表示从节点$i$到节点$n$的期望时间,$f_n=0$ 最优策略就是如果从$i, ...

  6. POJ 3150 循环矩阵的应用

    思路: 首先 先普及一个性质: 循环矩阵*循环矩阵=循环矩阵 由于此题是距离小于d的都加上一个数. 那么 构造矩阵的时候 我们发现 诶呦 这是个循环矩阵 看看数据范围 n^2log(k)可以过. 那就 ...

  7. mybatis的sql语句导致索引失效,使得查询超时

    mybaitis书写sql需要特别注意where条件中的语句,否则将会导致索引失效,使得查询总是超时.如下语句会出现导致索引失效的情况: with test1 as (select count(C_F ...

  8. week3_notebooke1

    今日内容:编码集合深浅cpoy文件操作函数初始函数函数的返回值函数的传参 初识: # == 数值比较 # is 比较的是内存地址 # id 测试的是内存地址 # 小数据池 str int # int: ...

  9. CentOS 安装 PHP 扩展

    下载地址:https://pecl.php.net/package/redis 上传目录:/usr/local/src //安装依赖 yum install php-devel -y //进入安装包目 ...

  10. python包管理(distutils、easy_install、pip、setup.py/requirements.txt、wheel)

    distutils.distutils2 distutils是 python 标准库的一部分,2000年发布.使用它能够进行 python 模块的 安装 和 发布. distutils2 被设计为 d ...