[TJOI2015]弦论(后缀数组or后缀自动机)
解法一:后缀数组
听说后缀数组解第k小本质不同的子串是一个经典问题。
把后缀排好序后第i个串的本质不同的串的贡献就是\(n-sa[i]+1-LCP(i,i-1)\)然后我们累加这个贡献,看到哪一个串的时候,这个贡献的和大于等于k,然后答案就在这个串里了,然后枚举就行了。
那么第k小子串该怎么办?
我们考虑二分答案,我们按字典序大小二分一个子串(具体就是二分第k小的本质不同子串,因为这个串可以\(O(n)\)求),然后看看比这个串小的串有多少个?然后改变上下界就行了。
那么我们如何求出比一个串小的串有多少个?
设我们我们二分的子串是后缀数组排名为x的后缀的前缀,长度为len。贡献就是\(\sum_{i=1}^{x-1}n-sa[i]+1+\sum_{i=x}^{n}min(LCP(x,i),len)\)
然后这个题就解决了。
代码很丑
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=501000;
int c[N],x[N],sa[N],y[N],height[N],rk[N],n,m,t,k,tmp,ans;
char s[N];
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
void get_sa(){
for(int i=1;i<=n;i++)c[x[i]=s[i]]++;
for(int i=1;i<=m;i++)c[i]+=c[i-1];
for(int i=n;i>=1;i--)sa[c[x[i]]--]=i;
for(int k=1;k<=n;k<<=1){
int num=0;
for(int i=n-k+1;i<=n;i++)y[++num]=i;
for(int i=1;i<=n;i++)if(sa[i]>k)y[++num]=sa[i]-k;
for(int i=1;i<=m;i++)c[i]=0;
for(int i=1;i<=n;i++)c[x[i]]++;
for(int i=1;i<=m;i++)c[i]+=c[i-1];
for(int i=n;i>=1;i--)sa[c[x[y[i]]]--]=y[i],y[i]=0;
for(int i=1;i<=n;i++)swap(x[i],y[i]);
x[sa[1]]=1;num=1;
for(int i=2;i<=n;i++)
x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?num:++num;
if(n==num)return;
m=num;
}
}
void get_height(){
int k=0;
for(int i=1;i<=n;i++)rk[sa[i]]=i;
for(int i=1;i<=n;i++){
if(rk[i]==1)continue;
if(k)k--;
int j=sa[rk[i]-1];
while(i+k<=n&&j+k<=n&&s[i+k]==s[j+k])k++;
height[rk[i]]=k;
}
}
int judge(int x){
int num=0;
tmp=0;
for(int i=1;i<=n;i++){
if(tmp+n-sa[i]+1-height[i]>=x){
int len=0;
for(int j=sa[i];j-sa[i]+1-height[i]<=x-tmp;j++)len++;
int mn=height[i+1];
num+=len;
for(int j=i+1;j<=n;j++){
mn=min(height[j],mn);
if(height[j]<len){
for(int k=j;k<=n;k++){
mn=min(height[k],mn);
num+=mn;
}
return num;
}
num+=len;
}
}
num+=n-sa[i]+1;
tmp=tmp+n-sa[i]+1-height[i];
}
}
int main(){
scanf("%s",s+1);
n=strlen(s+1);
m=122;
get_sa();get_height();
t=read();k=read();
if(n*(n+1)/2<k){
printf("-1");
return 0;
}
if(t==0){
for(int i=1;i<=n;i++){
if(tmp+n-sa[i]+1-height[i]>=k){
for(int j=sa[i];j-sa[i]+1-height[i]<=k-tmp;j++)printf("%c",s[j]);
return 0;
}
tmp=tmp+n-sa[i]+1-height[i];
}
}
else{
int l=1,r=k;
while(l<=r){
int mid=(l+r)>>1;
if(judge(mid)>=k){
ans=mid;
r=mid-1;
}
else l=mid+1;
}
tmp=0;
for(int i=1;i<=n;i++){
if(tmp+n-sa[i]+1-height[i]>=ans){
for(int j=sa[i];j-sa[i]+1-height[i]<=ans-tmp;j++)printf("%c",s[j]);
return 0;
}
tmp=tmp+n-sa[i]+1-height[i];
}
}
return 0;
}
解法二 后缀自动机
表示后缀自动机根本不会用。555
trans数组看做边的话一个\(DAG\),从这个\(root\)出发的每一条路径对应原串的一个子串这些子串都是本质不同的。我们可以做一个DP求出从一个点出发的所有路径有多少条路径转移方程\(dp[u]=1+\sum dp[v]\)。然后再在图上像类似线段树上二分的方法就可以求出答案了。
那么第二问该怎么办?
我们注意到一个串出现的次数就是后缀树中这个节点的子树内的后缀节点数(就是代表一个串结束的节点数)。所以我们可以仿照第一问的方案,只不过DP的方程改为了\(dp[u]=size[u]+\sum dp[v]\)(这里的\(size[u]\)代表后缀树中\(u\)的子树的后缀节点数)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=1001000;
int tot=1,u=1,len[N],size[N],fa[N],trans[N][27],n,t,k,f[N],c[N],A[N];;
bool vis[N];
char s[N];
void ins(int c){
int x=++tot;size[x]=1;
len[x]=len[u]+1;
for(;u&&trans[u][c]==0;u=fa[u])trans[u][c]=x;
if(u==0)fa[x]=1;
else{
int v=trans[u][c];
if(len[u]+1==len[v])fa[x]=v;
else{
int w=++tot;
len[w]=len[u]+1;
memcpy(trans[w],trans[v],sizeof(trans[w]));fa[w]=fa[v];
fa[v]=fa[x]=w;
for(;u&&trans[u][c]==v;u=fa[u])trans[u][c]=w;
}
}
u=x;
}
void work(int x,int k){
if(k<=size[x]) return;
k-=size[x];
for(int i=1;i<=26;i++){
int R=trans[x][i]; if(!R) continue;
if(k>f[R]) {k-=f[R];continue;}
putchar(i+'a'-1);work(R,k);return;
}
}
int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return sum*f;
}
int main(){
scanf("%s",s+1);
n=strlen(s+1);
for(int i=1;i<=n;i++)ins(s[i]-'a'+1);
t=read();k=read();
if(n*(n+1)/2<k){printf("-1");return 0;}
for(int i=1;i<=tot;i++)c[len[i]]++;
for(int i=1;i<=tot;i++)c[i]+=c[i-1];
for(int i=1;i<=tot;i++)A[c[len[i]]--]=i;
for(int i=tot;i>=1;i--)size[fa[A[i]]]+=size[A[i]];
for(int i=1;i<=tot;i++)t==0?(f[i]=size[i]=1):(f[i]=size[i]);
size[1]=f[1]=0;
for(int i=tot;i>=1;i--)
for(int j=1;j<=26;j++)
if(trans[A[i]][j])f[A[i]]+=f[trans[A[i]][j]];
work(1,k);
return 0;
}
解法三:后缀树
也是类似线段树二分的思想跟SAM差不多,不过不是在图里二分了,在树上二分。
[TJOI2015]弦论(后缀数组or后缀自动机)的更多相关文章
- (持续更新)虚树,KD-Tree,长链剖分,后缀数组,后缀自动机
真的就是讲课两天,吸收一个月呢! \(1.\)虚树 \(2.\)KD-Tree \(3.\)长链剖分 \(4.\)后缀数组 后缀数组 \(5.\)后缀自动机 后缀自动机
- hdu4436-str2int(后缀数组 or 后缀自动机)
题意:给你一堆字符串,仅包含数字'0'到'9'. 例如 101 123 有一个字符串集合S包含输入的N个字符串,和他们的全部字串. 操作字符串很无聊,你决定把它们转化成数字. 你可以把一个字符串转换成 ...
- 字符串数据结构模板/题单(后缀数组,后缀自动机,LCP,后缀平衡树,回文自动机)
模板 后缀数组 #include<bits/stdc++.h> #define R register int using namespace std; const int N=1e6+9; ...
- poj 2774 最长公共子--弦hash或后缀数组或后缀自己主动机
http://poj.org/problem?id=2774 我想看看这里的后缀数组:http://blog.csdn.net/u011026968/article/details/22801015 ...
- poj2774 Long Long Message(后缀数组or后缀自动机)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Long Long Message Time Limit: 4000MS Me ...
- 字符串 --- KMP Eentend-Kmp 自动机 trie图 trie树 后缀树 后缀数组
涉及到字符串的问题,无外乎这样一些算法和数据结构:自动机 KMP算法 Extend-KMP 后缀树 后缀数组 trie树 trie图及其应用.当然这些都是比较高级的数据结构和算法,而这里面最常用和最熟 ...
- bzoj 3172 后缀数组|AC自动机
后缀数组或者AC自动机都可以,模板题. /************************************************************** Problem: 3172 Us ...
- SPOJ694 DISUBSTR --- 后缀数组 / 后缀自动机
SPOJ694 DISUBSTR 题目描述: Given a string, we need to find the total number of its distinct substrings. ...
- POJ3080 POJ3450Corporate Identity(广义后缀自动机||后缀数组||KMP)
Beside other services, ACM helps companies to clearly state their “corporate identity”, which includ ...
随机推荐
- Django框架详解之template
模板简介 将页面的设计和python的代码分离开会更干净简洁更容易维护.我们可以使用Django的模板系统来实现这种模式 python的模板:HTML代码+模板语法 模板包括在使用时会被值替换掉的变量 ...
- css font-family 字体组
介绍图片来自: http://www.runoob.com/cssref/css-websafe-fonts.html
- BZOJ 3126 [USACO2013 Open]Photo (单调队列优化DP)
洛谷传送门 题目大意:给你一个长度为$n$的序列和$m$个区间,每个区间内有且仅有一个1,其它数必须是0,求整个序列中数字1最多的数量 神题,竟然是$DP$ 定义$f_{i}$表示第i位放一个1时,最 ...
- python异常处理,多线程,多进程
什么是异常? 异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行. 一般情况下,在Python无法正常处理程序时就会发生一个异常. 异常是Python对象,表示一个错误. 当Pyth ...
- 安装NexT主题
Hexo 安装主题的方式非常简单,只需要将主题文件拷贝至站点目录的 themes 目录下, 然后修改下配置文件即可. 下载主题包 在终端窗口下,定位到 Hexo 站点目录下.使用 Git checko ...
- React入门基础
1-react概念: React是一个用于构建用户界面的JavaScript库.React主要用于构建UI,很多人认为React是MVC中的V(视图).React起源于Facebook的内部项目.Re ...
- nginx配置修改
改变nginx配置想让它生效而不停止服务,如下两种方式都可以:1) 检查nginx配置: nginx -t; 配置重载: nginx -s reload2) 检查nginx配置: nginx -t; ...
- ES学习——分析器和自定义分析器
简介 es在对文档进行倒排索引的需要用分析器(Analyzer)对文档进行分析.建立索引.从文档中提取词元(Token)的算法称为分词器(Tokenizer),在分词前预处理的算法称为字符过滤器(Ch ...
- 第十一章 Servlet MVC模式
内包含案例,基于jsp+servlet的:MVC模式计算器:MVC模式登陆 第十一章 Servlet MVC模式 模型-视图-控制器(model-view-controller),简称MVC.MVC是 ...
- oracle刚開始学习的人经常使用操作100问
oracle刚開始学习的人经常使用操作100问 1. Oracle安装完毕后的初始口令? internal/oracle sys/change_on_install system/manager ...