HDU 4917 Permutation 拓扑排序的计数
题意:
一个有n个数的排列,给你一些位置上数字的大小关系。求合法的排列有多少种。
思路:
数字的大小关系可以看做是一条有向边,这样以每个位置当点,就可以把整个排列当做一张有向图。而且题目保证有解,所以只一张有向无环图。这样子,我们就可以把排列计数的问题转化为一个图的拓扑排序计数问题。
拓扑排序的做法可以参见ZJU1346 。
因为题目中点的数量比较多,所以无法直接用状压DP。 但是题目中的边数较少,所以不是联通的,而一个连通块的点不超过21个,而且不同连通块之间可以看做相互独立的。所以我们可以对于每个连通块分别求解,然后利用排列组合的知识,把他们组合起来。这样就可以得到最终解了。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <string>
#include <queue>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <functional>
#include <time.h> using namespace std; typedef __int64 ll; const int INF = <<;
const int MAXM = ;
const int MAXN = ;
const ll MOD = (ll) 1e9+; ll dp[<<MAXM]; //
ll combine[MAXN][MAXN]; //组合数
int Matrix[MAXN][MAXN]; //邻接矩阵,1表示正向边,-1表示反向边
int tmp[MAXM], pre[MAXM], num; //求每个连通块的拓扑序用
bool vis[MAXN]; //求连通块用
int n, m, tot;
ll ans; void dfs(int u) {
int u2 = num; //当前点的标号
tmp[num++] = u; //把这个点加入集合
vis[u] = true; int v;
for (int i = ; i <= n; i++) if (Matrix[u][i]) { //如果有边
if (!vis[i]) dfs(i); //如果没找过先找后继
if (==Matrix[u][i]) {
for (v = ; v < num; v++) if (tmp[v]==i) {
pre[v] |= (<<u2); //把这个点加入后继的前驱集合
}
}
}
} ll calc() { //计算某个连通块的拓扑数量
memset(dp, , sizeof(dp));
dp[] = ; for (int S = ; S < (<<num); S++) if (dp[S]>)
for (int i = ; i < num; i++) if (((S&pre[i])==pre[i]) && !(S&(<<i))) {
dp[S|(<<i)] = (dp[S|(<<i)]+dp[S])%MOD;
} return dp[(<<num)-];
} void solve() {
memset(vis, false, sizeof(vis));
ans = ;
tot = n;
for (int i = ; i <= n; i++) if (!vis[i]) { //搜连通块
memset(pre, , sizeof(pre)); num = ;
dfs(i);
if (num<) //只有一个或者两个点的情况,拓扑序时确定的
ans = (((num*combine[tot][num])%MOD)*ans)%MOD;
else
ans = (((calc()*combine[tot][num])%MOD)*ans)%MOD; tot -= num;
} printf("%I64d\n", ans);
} int main() {
#ifdef Phantom01
freopen("HDU4917.in", "r", stdin);
// freopen("HDU4917.out", "w", stdout);
#endif //Phantom01 for (int i = ; i < MAXN; i++) { //预处理组合数(杨辉三角)
combine[i][] = ;
for (int j = ; j <= i; j++)
combine[i][j] = (combine[i-][j-] + combine[i-][j])%MOD;
} while (scanf("%d%d", &n, &m)!=EOF) {
memset(Matrix, , sizeof(Matrix));
int u, v;
for (int i = ; i < m; i++) {
scanf("%d%d", &u, &v);
Matrix[u][v] = ;
Matrix[v][u] = -;
}
solve();
} return ;
}
HDU4917
写的时候,莫名其妙的wa了一发,要数据来对拍才发现是中间结果溢出了……所以,小心的调整运算顺序和适当的加括号很有必要。
HDU 4917 Permutation 拓扑排序的计数的更多相关文章
- HDU.2647 Reward(拓扑排序 TopSort)
HDU.2647 Reward(拓扑排序 TopSort) 题意分析 裸的拓扑排序 详解请移步 算法学习 拓扑排序(TopSort) 这道题有一点变化是要求计算最后的金钱数.最少金钱值是888,最少的 ...
- ACM: hdu 2647 Reward -拓扑排序
hdu 2647 Reward Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Des ...
- HDU 2647 Reward (拓扑排序)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2647 题意是给你n点m条有向边,叶子点(出度为0)上的值为888,父亲点为888+1,依次计算... ...
- hdu 5438 Ponds 拓扑排序
Ponds Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/contests/contest_showproblem ...
- CF798E. Mike and code of a permutation [拓扑排序 线段树]
CF798E. Mike and code of a permutation 题意: 排列p,编码了一个序列a.对于每个i,找到第一个\(p_j > p_i\)并且未被标记的j,标记这个j并\( ...
- 【NOIP2017】逛公园(最短路图,拓扑排序,计数DP)
题意: 策策同学特别喜欢逛公园. 公园可以看成一张 N 个点 M 条边构成的有向图,且没有自环和重边.其中 1 号点是公园的入口, N 号点是公园的出口,每条边有一个非负权值,代表策策经过这条边所要花 ...
- hdu 4857 逃生 拓扑排序+PQ,剥层分析
pid=4857">hdu4857 逃生 题目是求拓扑排序,但不是依照字典序最小输出,而是要使较小的数排在最前面. 一開始的错误思路:给每一个点确定一个优先级(该点所能到达的最小的点) ...
- HDU 4917 Permutation
意甲冠军: 序列p1.p2.p3--pn由1.2.3--n这些数字 现在给出一些条件pi<pj 部条件的排列的个数 思路: 非常easy想到用一条有向的线连接全部的pi和pj 那么就构成了 ...
- HDU 1285 经典拓扑排序入门题
确定比赛名次 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...
随机推荐
- 关于 jsp java servlet 中文汉字乱码的解决方法
在servlet类中的get,post最前面加上 req.setCharacterEncoding("UTF-8"); resp.setCharacterEncoding(&quo ...
- 虚拟机CentOS6.8下安装JDK
CentOS6.8下 首先下载JDK,执行命令如下: wget http://download.oracle.com/otn-pub/java/jdk/8u172-b11/a58eab1ec24242 ...
- 优动漫PAINT绘制紫阳花教程
紫阳花是插画.漫画很常见的绘画画材.这个教程非常好懂.而且很方便就能绘制出漂亮的效果.因为这种花一个月内能变化三种颜色,故而人们赋予它的花语是善变.背叛. 教程是简单,呃.... 没有优动漫PAINT ...
- NOIp模拟赛二十九
又是受虐的一天呢~接下来四天都要打模拟赛QAQ 今日分数:0(100)+100+0=100 A题O(读入)结论题判断结果时没return 0被subtask卡成0分,喜提fstQAQ,B题DP,C题不 ...
- 【xsy2440】【GDOI2016】疯狂动物城
感受一下这恐怖的题目长度~~~ 其实题意很裸,但是作为GDOI的一道防AK题,自然有他优秀的地方. 简化题意:给出一棵树,要求支持三个操作: 1.修改点值 2.询问点$x$到$y$之间的一些东东 3. ...
- Windows 10用户可以快速移除U盘
新浪科技讯,北京时间 4 月 9 日上午消息,据美国科技媒体 The Verge 报道,微软再次证实,从 1809 版本的 Windows 10 开始,插入新闪存盘时“快速移除”(quick remo ...
- vuejs--递归组件(树型表格分享)
前言 前段时间使用vue做了一套后台管理系统,其中使用最多就是递归组件,也因为自己对官方文档的不熟悉使得自己踩了不少坑,今天写出来和大家一起分享. 递归组件 组件在它的模板内可以递归地调用 ...
- 关于bom ef+bb+bf的问题
今天在商品详细页头部出现了一行空白,各种尝试无果,最后怀疑是不是bom头的问题,经过断点跟踪调试逐步缩小范围,果然最后发现是一个语言包文件的开头有 ef bb bf样式的字节,用ultraedit另存 ...
- [javase学习笔记]-7.6 thiskeyword的原理
这一节我们来讲一个keyword.就是thiskeyword. 我们还是通过样例来看吧: class Person { private String name; private int age; Pe ...
- LightOJ - 1132 Summing up Powers 矩阵高速幂
题目大意:求(1^K + 2^K + 3K + - + N^K) % 2^32 解题思路: 借用别人的图 能够先打表,求出Cnm,用杨辉三角能够高速得到 #include<cstdio> ...