编辑距离

Time Limit:5000MS Memory Limit:65536KB
Total Submit:314 Accepted:128

Description 

有两个字符串(仅有英文小写字母组成)A,B。我们可以通过一些操作将A修改成B。操作有三种:1修改一个字母,2删除一个字母,3插入一个字母。现在定义编辑距离为将A通过上述操作修改成B的最少次数。

Input 

第一行有一个正整数N,表示有多少组测试数据

接下来有2*N行,每两行代表一组数据。每组数据的第一行是一个起始字符串A,第二行是目的字符串B。

Output 

对于每组数据,输出一个值,表示将A修改成B的编辑距离、每组数据占一行,不要有多余空格。

N<=100 , A,B字符串的长度不超过500

Sample Input 

2
hello
hi
apple
google

Sample Output 

4
4

Source

解题:动态规划,dp[i][j]表示源串S前i个字符转成目标串T的前j个字符需要的最短编辑距离。

那么我们有如果S[i] == T[j]那么直接把dp[i][j] 就等于 dp[i-1][j-1],因为这个相等,就不需要操作次数

如果S[i] != T[j] 那么我们有三种选择,增加、删除以及修改,我们先考虑修改,如果把S[i]修改为T[j],那么dp[i][j] = dp[i-1][j-1]+1

如果我们要把S[i]删除,那么dp[i][j] = dp[i-1][j] + 1也就是说用前面的S[i-1]就能变成T[j]

如果我们选择增加 那么dp[i][j] = dp[i][j-1] + 1 也就是说,我们已经可以把S前面i个经过最短的编辑距离变为T[j-1]现在要变成T[j],我们可以选择在S[i]后面加上T[j],这样

S[i]就可以经过最短的编辑距离变成T[j]了。记得取最小就是了

 #include <bits/stdc++.h>
using namespace std;
const int maxn = ;
char sa[maxn],sb[maxn];
int dp[maxn][maxn];
int main() {
int kase;
scanf("%d",&kase);
while(kase--) {
scanf("%s%s",sa,sb);
int n = strlen(sa);
int m = strlen(sb);
memset(dp,0x3f,sizeof dp);
for(int i = ; i <= n; ++i) dp[i][] = i;
for(int i = ; i <= m; ++i) dp[][i] = i;
for(int i = ; i <= n; ++i)
for(int j = ; j <= m; ++j) {
dp[i][j] = min(dp[i-][j]+,dp[i][j-]+);
dp[i][j] = min(dp[i][j],dp[i-][j-] + (sa[i-] != sb[j-]));
}
printf("%d\n",dp[n][m]);
}
return ;
}

ECNUOJ 2857 编辑距离的更多相关文章

  1. [LeetCode] One Edit Distance 一个编辑距离

    Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...

  2. C#实现Levenshtein distance最小编辑距离算法

    Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑 ...

  3. 利用Levenshtein Distance (编辑距离)实现文档相似度计算

    1.首先将word文档解压缩为zip /** * 修改后缀名 */ public static String reName(String path){ File file=new File(path) ...

  4. Levenshtein Distance算法(编辑距离算法)

    编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...

  5. 编辑距离——Edit Distance

    编辑距离 在计算机科学中,编辑距离是一种量化两个字符串差异程度的方法,也就是计算从一个字符串转换成另外一个字符串所需要的最少操作步骤.不同的编辑距离中定义了不同操作的集合.比较常用的莱温斯坦距离(Le ...

  6. 编辑距离及其动态规划算法(Java代码)

    编辑距离概念描述 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.一般情况下编辑操作包括: 将一个字符替换成另一个字符: 插入一个字符: 删除一个字 ...

  7. stanford NLP学习笔记3:最小编辑距离(Minimum Edit Distance)

    I. 最小编辑距离的定义 最小编辑距离旨在定义两个字符串之间的相似度(word similarity).定义相似度可以用于拼写纠错,计算生物学上的序列比对,机器翻译,信息提取,语音识别等. 编辑距离就 ...

  8. leetcode72. Edit Distance(编辑距离)

    以下为个人翻译方便理解 编辑距离问题是一个经典的动态规划问题.首先定义dp[i][j表示word1[0..i-1]到word2[0..j-1]的最小操作数(即编辑距离). 状态转换方程有两种情况:边界 ...

  9. 准备NOIP2017 编辑距离问题 模板

    输入 第1行:字符串a(a的长度 <= 1000). 第2行:字符串b(b的长度 <= 1000). 输出   输出a和b的编辑距离   输入示例 kitten sitting 输出示例 ...

随机推荐

  1. ModelDriven机制及其运用

    ModelDriven 为什么需要ModelDriven 所谓ModelDriven ,意思是直接把实体类当成页面数据的收集对象.比如,有实体类User 如下: package cn.com.lead ...

  2. php计算两个日期相差的天数

    /** * 时间差计算 * * @param Timestamp $time * @return String Time Elapsed */ function time2Units ($time,$ ...

  3. jq 鼠标点击跳转页面后 改变点击菜单的样式代码

    点击菜单跳转页面,然而跳转后的页面字体并没有加粗用如下代码 <div class="bg01 menu"> <img class="img01" ...

  4. CDR X6低价还能持续多久?官方回应18年元旦过后要涨价

    目前,CDR X6特价活动,从双十二的到18年的元旦,火热程度一直屡刷新高,究其原因,其实不是大家不需要,只是这个平面设计软件价格实在太高(CDR X8/8200:CDR 2017/9500一套),尤 ...

  5. 用AI识别内部人威胁面临的道德规范

    用AI识别内部人威胁面临的道德规范 还记得汤姆·克鲁斯的<少数派报告>吗?人工智能可识别昭示未来风险的员工行为.该如何有效且有道德地使用这一数据呢? 为保护公司网络不受恶意软件.数据渗漏和 ...

  6. [ZJOI2006]物流运输 最短路 动态规划

    Code: 定义状态 $dp[i]$ 为前 $i$ 天的最小代价. 状态转移为:$dp[i]=min(dp[i],dp[j]+spfa(j+1,i)$ 这里 $spfa(i,j)$ 是指 $(i,j) ...

  7. 洛谷P3567 [POI2014]KUR-Couriers 主席树

    挺裸的,没啥可讲的. 不带修改的主席树裸题 Code: #include<cstdio> #include<algorithm> using namespace std; co ...

  8. 路飞学城Python-Day11

    [44.函数-生成器] 需求:有一个列表 [0,1,2,3,4,5,6,7,8,9],对这个列表循环+1 li = [0,1,2,3,4,5,6,7,8,9] li = map(lambda x:x+ ...

  9. js 监听ios手机键盘弹起和收起的事件

    document.body.addEventListener('focusin', () => { //软键盘弹起事件 console.log("键盘弹起") }) docu ...

  10. 注解@SuppressWarnings

    在JAVA中注解@SuppressWarnings("deprecation")的Deprecation是什么意思 过期的 @SuppressWarnings("depr ...