http://codextechnicanum.blogspot.com/2013/12/embedding-python-in-c-converting-c.html

//Make some vectors containing the data
static const double xarr[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14};
std::vector<double> xvec (xarr, xarr + sizeof(xarr) / sizeof(xarr[0]) );
static const double yarr[] = {0,0,1,1,0,0,2,2,0,0,1,1,0,0};
std::vector<double> yvec (yarr, yarr + sizeof(yarr) / sizeof(yarr[0]) ); //Transfer the C++ vector to a python tuple
pXVec = PyTuple_New(xvec.size());
for (i = 0; i < xvec.size(); ++i) {
pValue = PyFloat_FromDouble(xvec[i]);
if (!pValue) {
Py_DECREF(pXVec);
Py_DECREF(pModule);
fprintf(stderr, "Cannot convert array value\n");
return 1;
}
PyTuple_SetItem(pXVec, i, pValue);
} //Transfer the other C++ vector to a python tuple
pYVec = PyTuple_New(yvec.size());
for (i = 0; i < yvec.size(); ++i) {
pValue = PyFloat_FromDouble(yvec[i]);
if (!pValue) {
Py_DECREF(pYVec);
Py_DECREF(pModule);
fprintf(stderr, "Cannot convert array value\n");
return 1;
}
PyTuple_SetItem(pYVec, i, pValue); //
} //Set the argument tuple to contain the two input tuples
PyTuple_SetItem(pArgTuple, 0, pXVec);
PyTuple_SetItem(pArgTuple, 1, pYVec); //Call the python function
pValue = PyObject_CallObject(pFunc, pArgTuple);

Here's the entire .py file:

def plotStdVectors(x, y):
import numpy as np
import matplotlib.pyplot as plt
print "Printing from Python in plotStdVectors()"
print x
print y
x = np.fromiter(x, dtype = np.float)
y = np.fromiter(y, dtype = np.float)
print x
print y
plt.plot(x, y)
plt.show()
return 0

And, after compiling with the Makefile (which is for Ubuntu 12.10 using the system's default Python installation), can be run with:

$ ./testEmbed pythonToEmbed plotStdVectors
Hello from main
Hello from runPython()
Printing from Python in plotStdVectors()
(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0)
(0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 2.0, 2.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0)
[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.]
[ 0. 0. 1. 1. 0. 0. 2. 2. 0. 0. 1. 1. 0. 0.]
Result of call: 0
Program finished

And the plot:

 
Posted by Frogeeat 10:54 AM 
Real Time Plotting with C/C++ and python

Concepts:

Standard input/output (Think: the input and output of your program)
Unix Pipes
Plotting with matplotlib So, you have your code working, but you are tired of having to run a separate program to see plots? There are many simple solutions, but I am going to present what I think is the absolute simplest. What we are going to do is have your C/C++ program output the data and have python capture it and save plots in real-time! What does this entail? Well... Your C/C++ program no longer writes to a file (using fprintf), but rather writes to the standard output (STDIN, using simply printf)
Your python script will now read data straight from STDIN using raw_input()
You will have to use a unix shell to sew all of this together
Let's look at a very simple example. Suppose we have a very important C program that outputs some very important numbers. In order for it to work with this new standard, we have it output the data to screen. Namely, it does: makedata.c
#include <stdio.h>
#include <math.h> #define PI 3.14159 int main()
{
int i,j;
for(j=; j<; j++) {
for(i=; i<; i++) {
printf("%f\t",sinf(i * PI / 10.0 + j*PI/));
}
printf("\n");
} return ;
}
Now, when we run this, we get a bunch of numbers thrown to screen! $ gcc -lm -o makedata makedata.c
$ ./makedata
0.000000 0.309017 0.587785 0.809017 0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022
0.309017 0.587785 0.809017 0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005
0.587785 0.809017 0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012
0.809017 0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781
0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013
1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055
0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055 1.000000
0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055 1.000000 0.951059
0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055 1.000000 0.951059 0.809021
0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055 1.000000 0.951059 0.809021 0.587792
In order to capture the data in python, we must use the raw_input() function. This function simply gets input from the user and puts it into a variable. It puts everything the user types up to when they press enter. This is why the C code is that it only prints a newline (ie: '\n') once one full line of data has been outputted to screen. If we had put a newline in the first printf statement, the python plotting program would only plot one number at a time! So, you can think of the tab (\t) as deliniating between values and the newline (\n) deliniating between different sets of data. The python code that reads this data looks like: plot.py
import numpy as np
import pylab as py def plot_data(data):
py.clf()
py.plot(data)
py.show()
py.savefig("data-%.8d.png"%counter) if __name__ == "__main__":
counter =
while True:
try:
tmp = raw_input().strip().split()
data = np.array(tmp, dtype=np.double)
except EOFError:
print "Input has terminated! Exiting"
exit()
except ValueError:
print "Invalid input, skipping. Input was: %s"%tmp
continue print "Plotting plot number %d"%counter
plot_data(data)
counter +=
You can test this program by running it, typing a bunch of numbers separated by a space, then pressing enter. It will plot it, display it and save it! Then, the program will ask you again for more numbers. To exit, you type Control-D which makes the EOFError happen. What is going on in this program is quite simple. First, "tmp" gets the long string of characters that you typed in. However, python doesn't know it contains numbers, it just looks like a bunch of random characters! Now, we use numpy and tell it to create an array out of the data. The "dtype=np.double" is us telling numpy that we are realing with valid numbers. A ValueError happens if we weren't good on our promise and the input isn't in fact all numbers. Now for the most important part... how do we put these two things together? Unix has a very cool thing called input/output redirection. This allows us to redirect the output of one program to the input of another. So, instead of us having to type in the numbers for the python script, we can have the C/C++ program type it for us! The syntax is quite simple, all you have to do is: $ ./makedata | python plot.py
And now you are done! You should have a bunch of plots coming up of sin waves with various phases. Congrats! There is one more thing you can do to make your plots even more fancy. Sometimes, you don't want to save each figure or have to click through to see every plot, one at a time. Instead, you just want to see an animation of what is happening as it is happening! Or, you are already making an animation with many py.plot() statements, and you want it to be smoother and faster! To do this, you can to look into pylab animations. The people at scipy have a great tutorial on this issue. You can also look at a small plotting script I made which does something very similar. The basics of this method involve: creating your plots at the beginning of your script, and saving them into variables. Then, when you get new data that you want to plot, you simply change the data in the plot with .set_data(). One thing to note is the line "py.ion()" right after I imported pylab and how I use py.draw() instead of py.show(). If you want to get started playing around with this, simply take the same code from earlier in this document, add "py.ion()" after we import pylab, delete the py.savefig() line and replace py.show() with py.draw()! This will give you a (quite slow) animation.

DECREF

http://stackoverflow.com/questions/6977161/where-should-i-put-py-incref-and-py-decref-on-this-block-in-python-c-extension

The objects you create with PyInt_FromLong() and you add to the list should be kept in a local variable.

The reason are the ownership rules: PyInt_FromLong() generates a reference that you own. In the call to PyTuple_SetItem(), you lose this ownership again, because PyTuple_SetItem() "steals" it from you, so you don't have to care about. But PyList_Append() doesn't do so, it increases the refcount. In order to have the object GC'ed correctly, you have to release your ownership by DECREF'ing.

So, instead of PyList_Append(item, PyInt_FromLong(jp)), you do the following:

PyObject * jpo = PyInt_FromLong(jp);
// do some error checking here
PyList_Append(item, jpo);
Py_DECREF(jpo);

boost.python

https://www.youtube.com/watch?v=GE8EsGUsC2w

python c api

pyerr_setstring

boost

register_exception_translator

handy debugging tip

boost::python::throw_error_already_set(), set breakpoint here

https://bitbucket.org/sixty-north/scipy2014_boost_python_workshop_student_material/src

simply expose c++ function to python

boost::python::def

Embedding Python in C的更多相关文章

  1. Embeding Python & Extending Python with FFPython

    Introduction ffpython is a C++ lib, which is to simplify tasks that embed Python and extend Python. ...

  2. hybrid programming based on python and C/C++

    Python/C API Reference Manual¶ https://docs.python.org/3/c-api/index.html Extending and Embedding th ...

  3. 很好的c++和Python混合编程文章

    c++中嵌入python入门1 本人是用vc2003+python2.5学习的,其它的也应该差不了多少 0. 坏境设置把Python的include/libs目录分别加到vc的include/lib ...

  4. py_initialize:C调Python出错 是初始化错误?

    还是pythonpath和pythonname变量没有配置正确? py_initialize()方法是什么? In an application embedding Python, this shou ...

  5. Python中的__name__和__main__含义详解

    1背景 在写Python代码和看Python代码时,我们常常可以看到这样的代码: ? 1 2 3 4 5 def main():     ......   if __name == "__m ...

  6. 浅析 C++ 调用 Python 模块

    浅析 C++ 调用 Python 模块 作为一种胶水语言,Python 能够很容易地调用 C . C++ 等语言,也能够通过其他语言调用 Python 的模块. Python 提供了 C++ 库,使得 ...

  7. 结合python版本安装python-devel gcc和g++的区别 安装前做yum搜索

    [test@ecs autocloudservices]# yum install python-develLoaded plugins: fastestmirrorLoading mirror sp ...

  8. Python与Javascript相互调用超详细讲解(2022年1月最新)(三)基本原理Part 3 - 通过C/C++联通

    目录 TL; DR python调javascript javascript调python 原理 基于Node.js的javascript调用python 从Node调用python函数 V8 嵌入P ...

  9. 推荐一个第三方Qt库的集合

    https://inqlude.org/ Stable libraries | Development versions | Unreleased | Commercial | All attica ...

随机推荐

  1. Sqoop2 环境搭建

    原文地址:http://www.cnblogs.com/luogankun/p/4209017.html 正在准备做Spark SQL external data source与关系型数据库交互的部分 ...

  2. javascript中的splice方法介绍&示例

    javascript 中的 splice 方法很强大,它可以用于插入.删除或替换数组的元素. 下面来一一介绍! 删除:用于删除元素,两个参数,第一个参数(要删除第一项的位置),第二个参数(要删除的项数 ...

  3. RabbitMQ(四) -- Routing

    RabbitMQ(四) -- Routing `rabbitmq`可以通过路由选择订阅者来发布消息. Bindings 通过下面的函数绑定Exchange与消息队列: channel.queue_bi ...

  4. [ACM_暴力][ACM_几何] ZOJ 1426 Counting Rectangles (水平竖直线段组成的矩形个数,暴力)

    Description We are given a figure consisting of only horizontal and vertical line segments. Our goal ...

  5. 如何利用tomcat搭建一个动态服务器

    这篇文章只记录已解压缩包的方式安装,通常linux服务器上也是这样. 1.下载tomcat.zip压缩包. http://tomcat.apache.org/download-70.cgi 2.把zi ...

  6. piwik流量统计系统搭建(apache2.4+piwik+mysql5.6+php5.6.14)

    Piwik: 开放源代码的Web统计软件 Piwik是一个PHP和MySQL的开放源代码的Web统计软件. 它给你一些关于你的网站的实用统计报告,比如网页浏览人数, 访问最多的页面, 搜索引擎关键词等 ...

  7. iscroll初体验

    引入 iscroll是什么?多的概念性让人看不懂的东西就不说了因为看了也可能看不明白,iscroll主要用于移动端设备,主要包括以下的应用场合: 缩放 拉动刷新 速度和性能提升 精确捕捉元素 自定义滚 ...

  8. Java 线程 — JMM Java内存模型

    JMM Java Memory Model,Java内存模型,属于语言级的内存模型 并发编程中存在的问题: 如何通信:用于线程之间交换信息.两种方式:共享内存,消息传递 如何同步:用于控制不同线程间操 ...

  9. 《精通移动app测试实战:技术、工具和案例》图书目录

    图书相关链接: 京东网:http://item.jd.com/11891239.html 当当网:http://product.dangdang.com/23924601.html 亚马逊:https ...

  10. 关于启明星系统移除apppath配置,让系统自动获取路径来设置cookie的解决方法

    启明星系统底层使用统一接口,特别是用户,用户登录后,都会建立一个 userinfo 的cookie.请看下面2个网址: http://120.24.86.232/book http://120.24. ...