http://codextechnicanum.blogspot.com/2013/12/embedding-python-in-c-converting-c.html

//Make some vectors containing the data
static const double xarr[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14};
std::vector<double> xvec (xarr, xarr + sizeof(xarr) / sizeof(xarr[0]) );
static const double yarr[] = {0,0,1,1,0,0,2,2,0,0,1,1,0,0};
std::vector<double> yvec (yarr, yarr + sizeof(yarr) / sizeof(yarr[0]) ); //Transfer the C++ vector to a python tuple
pXVec = PyTuple_New(xvec.size());
for (i = 0; i < xvec.size(); ++i) {
pValue = PyFloat_FromDouble(xvec[i]);
if (!pValue) {
Py_DECREF(pXVec);
Py_DECREF(pModule);
fprintf(stderr, "Cannot convert array value\n");
return 1;
}
PyTuple_SetItem(pXVec, i, pValue);
} //Transfer the other C++ vector to a python tuple
pYVec = PyTuple_New(yvec.size());
for (i = 0; i < yvec.size(); ++i) {
pValue = PyFloat_FromDouble(yvec[i]);
if (!pValue) {
Py_DECREF(pYVec);
Py_DECREF(pModule);
fprintf(stderr, "Cannot convert array value\n");
return 1;
}
PyTuple_SetItem(pYVec, i, pValue); //
} //Set the argument tuple to contain the two input tuples
PyTuple_SetItem(pArgTuple, 0, pXVec);
PyTuple_SetItem(pArgTuple, 1, pYVec); //Call the python function
pValue = PyObject_CallObject(pFunc, pArgTuple);

Here's the entire .py file:

def plotStdVectors(x, y):
import numpy as np
import matplotlib.pyplot as plt
print "Printing from Python in plotStdVectors()"
print x
print y
x = np.fromiter(x, dtype = np.float)
y = np.fromiter(y, dtype = np.float)
print x
print y
plt.plot(x, y)
plt.show()
return 0

And, after compiling with the Makefile (which is for Ubuntu 12.10 using the system's default Python installation), can be run with:

$ ./testEmbed pythonToEmbed plotStdVectors
Hello from main
Hello from runPython()
Printing from Python in plotStdVectors()
(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0)
(0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 2.0, 2.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0)
[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.]
[ 0. 0. 1. 1. 0. 0. 2. 2. 0. 0. 1. 1. 0. 0.]
Result of call: 0
Program finished

And the plot:

 
Posted by Frogeeat 10:54 AM 
Real Time Plotting with C/C++ and python

Concepts:

Standard input/output (Think: the input and output of your program)
Unix Pipes
Plotting with matplotlib So, you have your code working, but you are tired of having to run a separate program to see plots? There are many simple solutions, but I am going to present what I think is the absolute simplest. What we are going to do is have your C/C++ program output the data and have python capture it and save plots in real-time! What does this entail? Well... Your C/C++ program no longer writes to a file (using fprintf), but rather writes to the standard output (STDIN, using simply printf)
Your python script will now read data straight from STDIN using raw_input()
You will have to use a unix shell to sew all of this together
Let's look at a very simple example. Suppose we have a very important C program that outputs some very important numbers. In order for it to work with this new standard, we have it output the data to screen. Namely, it does: makedata.c
#include <stdio.h>
#include <math.h> #define PI 3.14159 int main()
{
int i,j;
for(j=; j<; j++) {
for(i=; i<; i++) {
printf("%f\t",sinf(i * PI / 10.0 + j*PI/));
}
printf("\n");
} return ;
}
Now, when we run this, we get a bunch of numbers thrown to screen! $ gcc -lm -o makedata makedata.c
$ ./makedata
0.000000 0.309017 0.587785 0.809017 0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022
0.309017 0.587785 0.809017 0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005
0.587785 0.809017 0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012
0.809017 0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781
0.951056 1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013
1.000000 0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055
0.951057 0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055 1.000000
0.809018 0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055 1.000000 0.951059
0.587787 0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055 1.000000 0.951059 0.809021
0.309019 0.000003 -0.309014 -0.587783 -0.809015 -0.951055 -1.000000 -0.951058 -0.809020 -0.587789 -0.309022 -0.000005 0.309012 0.587781 0.809013 0.951055 1.000000 0.951059 0.809021 0.587792
In order to capture the data in python, we must use the raw_input() function. This function simply gets input from the user and puts it into a variable. It puts everything the user types up to when they press enter. This is why the C code is that it only prints a newline (ie: '\n') once one full line of data has been outputted to screen. If we had put a newline in the first printf statement, the python plotting program would only plot one number at a time! So, you can think of the tab (\t) as deliniating between values and the newline (\n) deliniating between different sets of data. The python code that reads this data looks like: plot.py
import numpy as np
import pylab as py def plot_data(data):
py.clf()
py.plot(data)
py.show()
py.savefig("data-%.8d.png"%counter) if __name__ == "__main__":
counter =
while True:
try:
tmp = raw_input().strip().split()
data = np.array(tmp, dtype=np.double)
except EOFError:
print "Input has terminated! Exiting"
exit()
except ValueError:
print "Invalid input, skipping. Input was: %s"%tmp
continue print "Plotting plot number %d"%counter
plot_data(data)
counter +=
You can test this program by running it, typing a bunch of numbers separated by a space, then pressing enter. It will plot it, display it and save it! Then, the program will ask you again for more numbers. To exit, you type Control-D which makes the EOFError happen. What is going on in this program is quite simple. First, "tmp" gets the long string of characters that you typed in. However, python doesn't know it contains numbers, it just looks like a bunch of random characters! Now, we use numpy and tell it to create an array out of the data. The "dtype=np.double" is us telling numpy that we are realing with valid numbers. A ValueError happens if we weren't good on our promise and the input isn't in fact all numbers. Now for the most important part... how do we put these two things together? Unix has a very cool thing called input/output redirection. This allows us to redirect the output of one program to the input of another. So, instead of us having to type in the numbers for the python script, we can have the C/C++ program type it for us! The syntax is quite simple, all you have to do is: $ ./makedata | python plot.py
And now you are done! You should have a bunch of plots coming up of sin waves with various phases. Congrats! There is one more thing you can do to make your plots even more fancy. Sometimes, you don't want to save each figure or have to click through to see every plot, one at a time. Instead, you just want to see an animation of what is happening as it is happening! Or, you are already making an animation with many py.plot() statements, and you want it to be smoother and faster! To do this, you can to look into pylab animations. The people at scipy have a great tutorial on this issue. You can also look at a small plotting script I made which does something very similar. The basics of this method involve: creating your plots at the beginning of your script, and saving them into variables. Then, when you get new data that you want to plot, you simply change the data in the plot with .set_data(). One thing to note is the line "py.ion()" right after I imported pylab and how I use py.draw() instead of py.show(). If you want to get started playing around with this, simply take the same code from earlier in this document, add "py.ion()" after we import pylab, delete the py.savefig() line and replace py.show() with py.draw()! This will give you a (quite slow) animation.

DECREF

http://stackoverflow.com/questions/6977161/where-should-i-put-py-incref-and-py-decref-on-this-block-in-python-c-extension

The objects you create with PyInt_FromLong() and you add to the list should be kept in a local variable.

The reason are the ownership rules: PyInt_FromLong() generates a reference that you own. In the call to PyTuple_SetItem(), you lose this ownership again, because PyTuple_SetItem() "steals" it from you, so you don't have to care about. But PyList_Append() doesn't do so, it increases the refcount. In order to have the object GC'ed correctly, you have to release your ownership by DECREF'ing.

So, instead of PyList_Append(item, PyInt_FromLong(jp)), you do the following:

PyObject * jpo = PyInt_FromLong(jp);
// do some error checking here
PyList_Append(item, jpo);
Py_DECREF(jpo);

boost.python

https://www.youtube.com/watch?v=GE8EsGUsC2w

python c api

pyerr_setstring

boost

register_exception_translator

handy debugging tip

boost::python::throw_error_already_set(), set breakpoint here

https://bitbucket.org/sixty-north/scipy2014_boost_python_workshop_student_material/src

simply expose c++ function to python

boost::python::def

Embedding Python in C的更多相关文章

  1. Embeding Python & Extending Python with FFPython

    Introduction ffpython is a C++ lib, which is to simplify tasks that embed Python and extend Python. ...

  2. hybrid programming based on python and C/C++

    Python/C API Reference Manual¶ https://docs.python.org/3/c-api/index.html Extending and Embedding th ...

  3. 很好的c++和Python混合编程文章

    c++中嵌入python入门1 本人是用vc2003+python2.5学习的,其它的也应该差不了多少 0. 坏境设置把Python的include/libs目录分别加到vc的include/lib ...

  4. py_initialize:C调Python出错 是初始化错误?

    还是pythonpath和pythonname变量没有配置正确? py_initialize()方法是什么? In an application embedding Python, this shou ...

  5. Python中的__name__和__main__含义详解

    1背景 在写Python代码和看Python代码时,我们常常可以看到这样的代码: ? 1 2 3 4 5 def main():     ......   if __name == "__m ...

  6. 浅析 C++ 调用 Python 模块

    浅析 C++ 调用 Python 模块 作为一种胶水语言,Python 能够很容易地调用 C . C++ 等语言,也能够通过其他语言调用 Python 的模块. Python 提供了 C++ 库,使得 ...

  7. 结合python版本安装python-devel gcc和g++的区别 安装前做yum搜索

    [test@ecs autocloudservices]# yum install python-develLoaded plugins: fastestmirrorLoading mirror sp ...

  8. Python与Javascript相互调用超详细讲解(2022年1月最新)(三)基本原理Part 3 - 通过C/C++联通

    目录 TL; DR python调javascript javascript调python 原理 基于Node.js的javascript调用python 从Node调用python函数 V8 嵌入P ...

  9. 推荐一个第三方Qt库的集合

    https://inqlude.org/ Stable libraries | Development versions | Unreleased | Commercial | All attica ...

随机推荐

  1. [游戏模版8] Win32 透明贴图

    >_<:The same with previous introduction. In the InitInstance fanction make a little change: &g ...

  2. Hadoop Capacity Scheduler源码实现剖析

    作者: 大圆那些事 | 文章可以转载,请以超链接形式标明文章原始出处和作者信息 网址: http://www.cnblogs.com/panfeng412/archive/2013/09/13/had ...

  3. 爬虫神器xpath的用法(一)

    1.如果你没有安装lxml,请运行pip install lxml或者easy_install lxml安装,如果在安装过程中失败的话, 是因为lxml需要依赖某些库文件,具体可以问下度娘,这里不再赘 ...

  4. PHP引号转义中解决POST,GET,Mysql数据自动转义问题

    在处理mysql和GET.POST的数据时,常常要对数据的引号进行转义操作. PHP中有三个设置可以实现自动对’(单引号),”(双引号),\(反斜线)和 NULL 字符转转. PHP称之为魔术引号,这 ...

  5. 转:SDL2源代码分析

    1:初始化(SDL_Init()) SDL简介 有关SDL的简介在<最简单的视音频播放示例7:SDL2播放RGB/YUV>以及<最简单的视音频播放示例9:SDL2播放PCM>中 ...

  6. [转]PROE传动链条的装配教程

    转自: 原文连接:PROE动链条的装配教程 传动链条的装配  

  7. J2EE Web开发入门—通过action是以传统方式返回JSON数据

    关键字:maven.m2eclipse.JSON.Struts2.Log4j2.tomcat.jdk7.Config Browser Plugin Created by Bob 20131031 l ...

  8. j$(function() j$(document).ready 区别

    $j(document).ready(function(){}); // 或者  $j(function(){}); 第一个是直接使用Jquery调用function,第二个是在文档加载完毕后才去调用 ...

  9. samba权限之easy举例说明--原创

    实验环境RHEL5.0,samba3.023rc-2 一.何为browsealbe=no? 如图lingdao目录的权限为777 如图ling目录的共享设置和用户的ID和组 当用户lingdao_01 ...

  10. Android--Sensor传感器

    前言 Android提供了对设备传感器的支持,只要Android设备的硬件提供了这些传感器,Android应用可以通过传感器来获取设备的外界条件,包括手机的运行状态.当前摆放的方向等.Android系 ...