Mayor's posters

Time Limit: 1000MS
Memory Limit: 65536K

Total Submissions: 37346
Accepted: 10864

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.
The picture below illustrates the case of the sample input.

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

有感:

今天感觉收获挺多,再看一位大神写的博客(写的很好),学习线段数,顺带题解了什么叫离散化,做为初学着,我表示我完全是照着大神的代码敲的

。。本题数据很大,直接做的话会超时超内存,需离散化

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1 const int maxn=11111;
bool hash[maxn];
int li[maxn],ri[maxn];
int X[maxn*3];
int col[maxn<<2];
int cnt; void PushDown(int rt)
{
if(col[rt]!=-1)
{
col[rt<<1]=col[rt<<1|1]=col[rt];
col[rt]=-1;
}
} void update(int L,int R,int c,int l,int r,int rt)
{
if(L<=l&&R>=r)
{
col[rt]=c;
return ;
}
PushDown(rt);
int m=(l+r)>>1;
if(L<=m) update(L,R,c,lson);
if(m<R) update(L,R,c,rson);
} void query(int l,int r,int rt)
{
if(col[rt]!=-1)
{
if(!hash[col[rt]]) cnt++;
hash[col[rt]]=true;
return ;
}
if(l==r) return ;
int m=(l+r)>>1;
query(lson);
query(rson);
} int Bin(int key,int n,int X[])
{
int l=0,r=n-1;
while(l<=r)
{
int m=(l+r)>>1;
if(X[m]==key) return m;
if(X[m]<key) l=m+1;
else r=m-1;
}
return -1;
} int main()
{
int T,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int nn=0;
for(int i=0;i<n;i++)
{
scanf("%d%d",&li[i],&ri[i]);
X[nn++]=li[i];
X[nn++]=ri[i];
}
sort(X,X+nn);
int m=1;
for(int i=1;i<nn;i++)
if(X[i]!=X[i-1]) X[m++]=X[i]; for(int i=m-1;i>0;i--)
{
if(X[i]!=X[i-1]+1)
X[m++]=X[i-1]+1;
}
sort(X,X+m);
memset(col,-1,sizeof(col));
for(int i=0;i<n;i++)
{
int l=Bin(li[i],m,X);
int r=Bin(ri[i],m,X);
update(l,r,i,0,m-1,1);
}
cnt=0;
memset(hash,false,sizeof(hash));
query(0,m-1,1);
printf("%d\n",cnt);
}
}

poj2528 Mayor's posters(线段树之成段更新)的更多相关文章

  1. Codeforces295A - Greg and Array(线段树的成段更新)

    题目大意 给定一个序列a[1],a[2]--a[n] 接下来给出m种操作,每种操作是以下形式的: l r d 表示把区间[l,r]内的每一个数都加上一个值d 之后有k个操作,每个操作是以下形式的: x ...

  2. hdu 1698 Just a Hook(线段树之 成段更新)

    Just a Hook                                                                             Time Limit: ...

  3. poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 43507   Accepted: 12693 ...

  4. POJ2528 Mayor's posters —— 线段树染色 + 离散化

    题目链接:https://vjudge.net/problem/POJ-2528 The citizens of Bytetown, AB, could not stand that the cand ...

  5. [poj2528] Mayor's posters (线段树+离散化)

    线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...

  6. POJ2528:Mayor's posters(线段树区间更新+离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  7. poj2528 Mayor's posters(线段树区间修改+特殊离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  8. poj2528 Mayor's posters(线段树区间覆盖)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 50888   Accepted: 14737 ...

  9. 线段树之成段更新( 需要用到延迟标记,简单来说就是每次更新的时候不要更新到底,用延迟标记使得更新延迟到下次需要更新or询问到的时候)

    HDU  1698 链接:  http://acm.hdu.edu.cn/showproblem.php?pid=1698 线段树功能:update:成段替换 (由于只query一次总区间,所以可以直 ...

随机推荐

  1. Winform开发框架之客户关系管理系统(CRM)的开发总结系列2-基于框架的开发过程

    在上篇随笔<Winform开发框架之客户关系管理系统(CRM)的开发总结系列1-界面功能展示>中介绍了我的整个CRM系统的概貌,本篇继续本系列的文章,介绍如何基于我的<winform ...

  2. [CLR via C#]8. 方法

    一.实例构造器和类(引用类型) 类实例构造器是允许将类型的实例初始化为良好状态的一种特殊的方法. 类实例构造器方法在"方法定义元数据表"中始终叫.ctor(代表constructo ...

  3. sql 添加修改说明

    --为字段a2添加描述信息 EXECUTE sp_addextendedproperty N'MS_Description', '性别', N'user', N'dbo', N'table', N'表 ...

  4. MySQL更新优化

    通常情况下,当访问某张表的时候,读取者首先必须获取该表的锁,如果有写入操作到达,那么写入者一直等待读取者完成操作(查询开始之后就不能中断,因此允许读取者完成操作).当读取者完成对表的操作的时候,锁就会 ...

  5. 【Asphyre引擎】学习笔记(二)

    转一篇火人论坛那边的一份学习文档,我简单排一下版,希望对入门者有帮助. 感谢China Yang,这份文档也帮助我快速入了门. 和我一起学 Asphyre Sphinx Framework v1.0. ...

  6. CentOS常用指令

    创建文件: 如touch a.txt 创建文件夹: mkdir -p 文件夹名,当文件夹不存在时候,创建这个文件夹 文件重命名: 把文件text.php得命名为index.php,可以是rename ...

  7. Orchard MySql 修正版 下载

    Orchard是支持多种数据库的如果是个人站长推荐使用MySql作为运行数据库,虽然SqlServer更为强大,但总觉得SqlServer好重啊,一装就是几个G. 最近的版本在使用MySql建库时却会 ...

  8. ABAP中正则表达式的简单使用方法 (转老白BLOG)

    在一个论坛上面看到有人在问正则表达式的问题,特举例简单说明一下.另外,REPLACE也支持REGEX关键字.最后:只能是ECC6或者更高版本才可以(ABAP supports POSIX regula ...

  9. 关于在EXCEL中输入01-01-01被转换为2001/1/1怎么解决

    当向EXCEL写入类似'01-01-01'或'01-01'这样的数据时,打开EXCEL时会发现数据变成了2001/1/1和1月1日. 这是由于EXCEL自动转换功能,我们得要在输入前多加一个’号. 而 ...

  10. IOS中程序如何进行推送消息(本地推送,远程推送)2(上)

    未看过本地推送的,可以提前看一下本地推送. http://www.cnblogs.com/wolfhous/p/5135711.html =============================== ...