poj2528 Mayor's posters(线段树之成段更新)
Mayor's posters
Time Limit: 1000MS
Memory Limit: 65536K
Total Submissions: 37346
Accepted: 10864
Description
The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
- The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.
Input
The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.
Output
For each input data set print the number of visible posters after all the posters are placed.
The picture below illustrates the case of the sample input.
Sample Input
1
5
1 4
2 6
8 10
3 4
7 10
Sample Output
4
有感:
今天感觉收获挺多,再看一位大神写的博客(写的很好),学习线段数,顺带题解了什么叫离散化,做为初学着,我表示我完全是照着大神的代码敲的
。。本题数据很大,直接做的话会超时超内存,需离散化
代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1 const int maxn=11111;
bool hash[maxn];
int li[maxn],ri[maxn];
int X[maxn*3];
int col[maxn<<2];
int cnt; void PushDown(int rt)
{
if(col[rt]!=-1)
{
col[rt<<1]=col[rt<<1|1]=col[rt];
col[rt]=-1;
}
} void update(int L,int R,int c,int l,int r,int rt)
{
if(L<=l&&R>=r)
{
col[rt]=c;
return ;
}
PushDown(rt);
int m=(l+r)>>1;
if(L<=m) update(L,R,c,lson);
if(m<R) update(L,R,c,rson);
} void query(int l,int r,int rt)
{
if(col[rt]!=-1)
{
if(!hash[col[rt]]) cnt++;
hash[col[rt]]=true;
return ;
}
if(l==r) return ;
int m=(l+r)>>1;
query(lson);
query(rson);
} int Bin(int key,int n,int X[])
{
int l=0,r=n-1;
while(l<=r)
{
int m=(l+r)>>1;
if(X[m]==key) return m;
if(X[m]<key) l=m+1;
else r=m-1;
}
return -1;
} int main()
{
int T,n;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
int nn=0;
for(int i=0;i<n;i++)
{
scanf("%d%d",&li[i],&ri[i]);
X[nn++]=li[i];
X[nn++]=ri[i];
}
sort(X,X+nn);
int m=1;
for(int i=1;i<nn;i++)
if(X[i]!=X[i-1]) X[m++]=X[i]; for(int i=m-1;i>0;i--)
{
if(X[i]!=X[i-1]+1)
X[m++]=X[i-1]+1;
}
sort(X,X+m);
memset(col,-1,sizeof(col));
for(int i=0;i<n;i++)
{
int l=Bin(li[i],m,X);
int r=Bin(ri[i],m,X);
update(l,r,i,0,m-1,1);
}
cnt=0;
memset(hash,false,sizeof(hash));
query(0,m-1,1);
printf("%d\n",cnt);
}
}
poj2528 Mayor's posters(线段树之成段更新)的更多相关文章
- Codeforces295A - Greg and Array(线段树的成段更新)
题目大意 给定一个序列a[1],a[2]--a[n] 接下来给出m种操作,每种操作是以下形式的: l r d 表示把区间[l,r]内的每一个数都加上一个值d 之后有k个操作,每个操作是以下形式的: x ...
- hdu 1698 Just a Hook(线段树之 成段更新)
Just a Hook Time Limit: ...
- poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 43507 Accepted: 12693 ...
- POJ2528 Mayor's posters —— 线段树染色 + 离散化
题目链接:https://vjudge.net/problem/POJ-2528 The citizens of Bytetown, AB, could not stand that the cand ...
- [poj2528] Mayor's posters (线段树+离散化)
线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...
- POJ2528:Mayor's posters(线段树区间更新+离散化)
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- poj2528 Mayor's posters(线段树区间修改+特殊离散化)
Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...
- poj2528 Mayor's posters(线段树区间覆盖)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 50888 Accepted: 14737 ...
- 线段树之成段更新( 需要用到延迟标记,简单来说就是每次更新的时候不要更新到底,用延迟标记使得更新延迟到下次需要更新or询问到的时候)
HDU 1698 链接: http://acm.hdu.edu.cn/showproblem.php?pid=1698 线段树功能:update:成段替换 (由于只query一次总区间,所以可以直 ...
随机推荐
- php获取textarea的值并处理回车换行的方法
//注:\n是用双引号包的的,双引号!!双引号!!! explode("\n",$row[0]['value']
- 【poj 3080】Blue Jeans(字符串--KMP+暴力枚举+剪枝)
题意:求n个串的字典序最小的最长公共子串. 解法:枚举第一个串的子串,与剩下的n-1个串KMP匹配,判断是否有这样的公共子串.从大长度开始枚举,找到了就break挺快的.而且KMP的作用就是匹配子串, ...
- Oracle锁表与解锁
查看锁表语句:方法1: select sess.sid, sess.serial#, lo.oracle_username, lo.o ...
- 通过原生js添加div和css
function createStyle(){ return"*{padding:0;margin:0;border:0}.loading{width:640px;height:1024px ...
- javascript宿主对象之window.location
location属性是一个用来存储当前页面URL信息的对象. 下面我们通过循环来列出location对象的完整属性列表: for(var i in location){ if(typeof locat ...
- Atitit.木马病毒的免杀原理---sikuli 的使用
Atitit.木马病毒的免杀原理---sikuli 的使用 1. 使用sikuli java api1 1.1. 3. Write code!1 2. 常用api2 2.1. wait 等待某个界面出 ...
- arcgis python 更新顺序号
i = 0def myFun(): global i i=i +1 return i myFun() ========================== accumulate( ) total = ...
- [ html canvas createImageData 创建万花筒效果 ] canvas绘图属性 createImageData 属性讲解 及创建万花筒效果
<!DOCTYPE html> <html lang='zh-cn'> <head> <title>Insert you title</title ...
- 使用Sharepoint定时运行Excel中宏程序
需求:因为Excel中数据量很大,其中包含了几个宏程序从其他数据源读取数据,运行一次宏需要比较长的时间,为了不影响使用,要求每天半夜运行一次Excel中的宏(无参数),Excel存放在共盘上. 解决方 ...
- Sharepoint学习笔记—习题系列--70-573习题解析 -(Q121-Q124)
Question 121You develop a custom approval workflow. The workflow uses the CreateTask class to assign ...