97. Interleaving String

Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2.

For example, Given: s1 = "aabcc", s2 = "dbbca",

When s3 = "aadbbcbcac", return true.

When s3 = "aadbbbaccc", return false.

类似于最长公共子序列,从字符尾部开始处理,解题思路很容易找到,递归来做很简单,但是会超时。

class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if(s3.length() != s1.length() + s2.length())
return false;
return isInterleave(s1, s2, s3, s1.length() - 1, s2.length() - 1, s3.length() - 1);
}
private:
bool isInterleave(string &s1, string &s2, string &s3, int i1, int i2, int i3) {
if(i3 < 0) //i3最先到-1
return i1 < 0 && i2 < 0;
return (s1[i1] == s3[i3] && isInterleave(s1, s2, s3, i1 - 1, i2, i3 - 1)) ||
(s2[i2] == s3[i3] && isInterleave(s1, s2, s3, i1, i2 - 1, i3 - 1));
}
};

其实递归中用不上i1、i2、i3这3个状态标志,因为任意两个标志可以表示第三个标志,状态的设计对解题有时很关键。

可以看出该问题满足最优子结构特征和重叠子问题特征,那么试着使用动态规划来改进时间复杂度。

dp[i][j]表示s[0..i]s2[0..j]匹配s3[0..(i + j)],则状态转移方程为:

dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]) || (dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]),子问题数目为O(n2),每个子问题需要用到O(n0)个子问题的结果,跟最长公共子序列问题一样,同属于2D/0D问题。

这是一个二维动态规划问题,边界条件即当i = 0j = 0时,当达到边界条件时就退化为一维动态规划问题。

i = 0时,状态转移方程退化为dp[0][j] = (dp[0][j - 1] && s2[j - 1] == s3[j - 1])

j = 0时,状态转移方程退化为dp[i][0] = (dp[i - 1][0] && s1[i - 1] == s3[i - 1])

可以提前把边界情况计算好,也可以边填表边计算,一般很难说哪种好一些,不过在该情况下实测边填表边计算要好一些。

状态转移图如下,横轴表示s1,纵轴表示s2,其中每一个状态必须访问图中左下角的状态,那么可以先解决左下角的子问题,再计算原问题,这样避免重复计算,最终返回dp[s1.length()][s2.length()]即可。该算法时间复杂度为O(N2),空间复杂度为O(N2)。

提前把边界情况计算好,代码如下。

class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if(s3.length() != s1.length() + s2.length())
return false;
vector<vector<bool>> dp(s1.length() + 1, vector<bool>(s2.length() + 1, true));
for(size_t i = 1; i <= s1.length(); ++i)
dp[i][0] = dp[i - 1][0] && s1[i - 1] == s3[i - 1];
for(size_t j = 1; j <= s2.length(); ++j)
dp[0][j] = dp[0][j - 1] && s2[j - 1] == s3[j - 1];
for(size_t i = 1; i <= s1.length(); ++i) {
for(size_t j = 1; j <= s2.length(); ++j) {
dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]) ||
(dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]);
}
}
return dp[s1.length()][s2.length()];
}
}; //使用滚动数组优化
class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if(s1.length() + s2.length() != s3.length())
return false;
if(s1.length() < s2.length())
return isInterleave(s2, s1, s3);
vector<bool> dp(s2.length() + 1, true);
for(size_t i = 1; i <= s2.length(); ++i)
dp[i] = s2[i - 1] == s3[i - 1] && dp[i - 1];
for(size_t i = 1; i <= s1.length(); ++i) {
dp[0] = s1[i - 1] == s3[i - 1] && dp[0];
for(size_t j = 1; j <= s2.length(); ++j)
dp[j] = (dp[j] && s1[i - 1] == s3[i + j - 1]) ||
(dp[j - 1] && s2[j - 1] == s3[i + j - 1]);
}
return dp[s2.length()];
}
};

边填表边计算,代码如下。

class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if(s3.length() != s1.length() + s2.length())
return false;
bool dp[s1.length() + 1][s2.length() + 1];
for(size_t i = 0; i <= s1.length(); i++) {
for(size_t j = 0; j <= s2.length(); j++) {
if(i == 0 && j == 0)
dp[i][j] = true;
else if(i == 0)
dp[i][j] = (dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]);
else if(j == 0)
dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]);
else
dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]) ||
(dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]);
}
}
return dp[s1.length()][s2.length()];
}
};

二维动态规划——Interleaving String的更多相关文章

  1. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  2. 543A - Writing Code(二维动态规划)

    题意:现在要写m行代码,总共有n个文件,现在给出第i个文件每行会出现v[i]个bug,问你在bug少于b的条件下有多少种安排 分析:定义dp[i][j][k],i个文件,用了j行代码,有k个bug 状 ...

  3. 二维动态规划&&二分查找的动态规划&&最长递增子序列&&最长连续递增子序列

    题目描述与背景介绍 背景题目: [674. 最长连续递增序列]https://leetcode-cn.com/problems/longest-continuous-increasing-subseq ...

  4. [leetcode] 72. 编辑距离(二维动态规划)

    72. 编辑距离 再次验证leetcode的评判机有问题啊!同样的代码,第一次提交超时,第二次提交就通过了! 此题用动态规划解决. 这题一开始还真难到我了,琢磨半天没有思路.于是乎去了网上喵了下题解看 ...

  5. HDU 1117 免费馅饼 二维动态规划

    思路:a[i][j]表示j秒在i位置的数目,dp[i][j]表示j秒在i位置最大可以收到的数目. 转移方程:d[i][j]=max(dp[i-1][j],dp[i-1][j-1],dp[i-1][j+ ...

  6. 二维动态规划——Palindrome

    Palindrome Description A palindrome is a symmetrical string, that is, a string read identically from ...

  7. LeetCode 笔记系列 20 Interleaving String [动态规划的抽象]

    题目: Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. For example,Given: ...

  8. LeetCode之“动态规划”:Interleaving String

    题目链接 题目要求: Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. For example ...

  9. [LeetCode] Interleaving String - 交织的字符串

    题目如下:https://oj.leetcode.com/problems/interleaving-string/ Given s1, s2, s3, find whether s3 is form ...

随机推荐

  1. nginx的RTMP协议服务器

    nginx的RTMP协议服务器 by ahuner 通过以下的配置,可以使nginx接收RTMP流,并在web上播放实时视频. 1.openssl安装 nginx需要http_ssl_module模块 ...

  2. 并发数据(锁)ReaderWriterLockSlim

    ReaderWriterLockSlim 类 ReaderWriterLockSlim 类支持三种锁定模式:Read,Write,UpgradeableRead.这三种模式对应的方法分别是 Enter ...

  3. android缓存之Lrucache 和LinkedHashMap

    两者的区别 网上有很多人使用软引用加载图片的多 ,但是现在已经不再推荐使用这种方式了,(1)因为从 Android 2.3 (API Level 9)开始,垃圾回收器会更倾向于回收持有软引用或弱引用的 ...

  4. ssl通信c实现

    /*File:client.c *Auth:sjin *Date:2014-03-11 * */ #include <stdio.h>#include <string.h>#i ...

  5. (中等) CF 576D Flights for Regular Customers (#319 Div1 D题),矩阵快速幂。

    In the country there are exactly n cities numbered with positive integers from 1 to n. In each city ...

  6. 简单制作 OS X Yosemite 10.10 正式版U盘USB启动安装盘方法教程 (全新安装 Mac 系统)

    原文地址: http://www.iplaysoft.com/osx-yosemite.html 简单制作 Mac OS X Yosemite 正式版 USB 启动盘的方法教程: 其实制作 OS X ...

  7. springMVC 多方法controller

    1. 新建web project 2. 加入jar包 3. 写web.xml <?xml version="1.0" encoding="UTF-8"?& ...

  8. 13、手把手教你Extjs5(十三)模块字段和Grid列的定义[1]

    这一节加入模块自定义字段,并根据这些字段生成model.然后再定义grid中的分组和列.从这一切开始真正进入到了模块自定义的节奏当中,代码的复杂度和技巧性也大大提高.先从模块字段的自定义开始.先看一下 ...

  9. iOS开发——单例模式

    一.用if语句实现单例 1.在.h文件中 #import <Foundation/Foundation.h> @interface YYTRequestTool : NSObject +( ...

  10. Java-JNA调用DLL(转)

    源:JNA调用DLL 介绍 给大家介绍一个最新的访问本机代码的Java框架—JNA. JNA(Java Native Access)框架是一个开源的Java框架,是SUN公司主导开发的,建立在经典的J ...