二维动态规划——Interleaving String
Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2.
For example, Given: s1 = "aabcc", s2 = "dbbca",
When s3 = "aadbbcbcac", return true.
When s3 = "aadbbbaccc", return false.
类似于最长公共子序列,从字符尾部开始处理,解题思路很容易找到,递归来做很简单,但是会超时。
class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if(s3.length() != s1.length() + s2.length())
return false;
return isInterleave(s1, s2, s3, s1.length() - 1, s2.length() - 1, s3.length() - 1);
}
private:
bool isInterleave(string &s1, string &s2, string &s3, int i1, int i2, int i3) {
if(i3 < 0) //i3最先到-1
return i1 < 0 && i2 < 0;
return (s1[i1] == s3[i3] && isInterleave(s1, s2, s3, i1 - 1, i2, i3 - 1)) ||
(s2[i2] == s3[i3] && isInterleave(s1, s2, s3, i1, i2 - 1, i3 - 1));
}
};
其实递归中用不上i1、i2、i3这3个状态标志,因为任意两个标志可以表示第三个标志,状态的设计对解题有时很关键。
可以看出该问题满足最优子结构特征和重叠子问题特征,那么试着使用动态规划来改进时间复杂度。
设dp[i][j]表示s[0..i]与s2[0..j]匹配s3[0..(i + j)],则状态转移方程为:
dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]) || (dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]),子问题数目为O(n2),每个子问题需要用到O(n0)个子问题的结果,跟最长公共子序列问题一样,同属于2D/0D问题。
这是一个二维动态规划问题,边界条件即当i = 0或j = 0时,当达到边界条件时就退化为一维动态规划问题。
当i = 0时,状态转移方程退化为dp[0][j] = (dp[0][j - 1] && s2[j - 1] == s3[j - 1]),
当j = 0时,状态转移方程退化为dp[i][0] = (dp[i - 1][0] && s1[i - 1] == s3[i - 1])。
可以提前把边界情况计算好,也可以边填表边计算,一般很难说哪种好一些,不过在该情况下实测边填表边计算要好一些。
状态转移图如下,横轴表示s1,纵轴表示s2,其中每一个状态必须访问图中左下角的状态,那么可以先解决左下角的子问题,再计算原问题,这样避免重复计算,最终返回dp[s1.length()][s2.length()]即可。该算法时间复杂度为O(N2),空间复杂度为O(N2)。
提前把边界情况计算好,代码如下。
class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if(s3.length() != s1.length() + s2.length())
return false;
vector<vector<bool>> dp(s1.length() + 1, vector<bool>(s2.length() + 1, true));
for(size_t i = 1; i <= s1.length(); ++i)
dp[i][0] = dp[i - 1][0] && s1[i - 1] == s3[i - 1];
for(size_t j = 1; j <= s2.length(); ++j)
dp[0][j] = dp[0][j - 1] && s2[j - 1] == s3[j - 1];
for(size_t i = 1; i <= s1.length(); ++i) {
for(size_t j = 1; j <= s2.length(); ++j) {
dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]) ||
(dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]);
}
}
return dp[s1.length()][s2.length()];
}
};
//使用滚动数组优化
class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if(s1.length() + s2.length() != s3.length())
return false;
if(s1.length() < s2.length())
return isInterleave(s2, s1, s3);
vector<bool> dp(s2.length() + 1, true);
for(size_t i = 1; i <= s2.length(); ++i)
dp[i] = s2[i - 1] == s3[i - 1] && dp[i - 1];
for(size_t i = 1; i <= s1.length(); ++i) {
dp[0] = s1[i - 1] == s3[i - 1] && dp[0];
for(size_t j = 1; j <= s2.length(); ++j)
dp[j] = (dp[j] && s1[i - 1] == s3[i + j - 1]) ||
(dp[j - 1] && s2[j - 1] == s3[i + j - 1]);
}
return dp[s2.length()];
}
};
边填表边计算,代码如下。
class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
if(s3.length() != s1.length() + s2.length())
return false;
bool dp[s1.length() + 1][s2.length() + 1];
for(size_t i = 0; i <= s1.length(); i++) {
for(size_t j = 0; j <= s2.length(); j++) {
if(i == 0 && j == 0)
dp[i][j] = true;
else if(i == 0)
dp[i][j] = (dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]);
else if(j == 0)
dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]);
else
dp[i][j] = (dp[i - 1][j] && s1[i - 1] == s3[i + j - 1]) ||
(dp[i][j - 1] && s2[j - 1] == s3[i + j - 1]);
}
}
return dp[s1.length()][s2.length()];
}
};
二维动态规划——Interleaving String的更多相关文章
- 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance
引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...
- 543A - Writing Code(二维动态规划)
题意:现在要写m行代码,总共有n个文件,现在给出第i个文件每行会出现v[i]个bug,问你在bug少于b的条件下有多少种安排 分析:定义dp[i][j][k],i个文件,用了j行代码,有k个bug 状 ...
- 二维动态规划&&二分查找的动态规划&&最长递增子序列&&最长连续递增子序列
题目描述与背景介绍 背景题目: [674. 最长连续递增序列]https://leetcode-cn.com/problems/longest-continuous-increasing-subseq ...
- [leetcode] 72. 编辑距离(二维动态规划)
72. 编辑距离 再次验证leetcode的评判机有问题啊!同样的代码,第一次提交超时,第二次提交就通过了! 此题用动态规划解决. 这题一开始还真难到我了,琢磨半天没有思路.于是乎去了网上喵了下题解看 ...
- HDU 1117 免费馅饼 二维动态规划
思路:a[i][j]表示j秒在i位置的数目,dp[i][j]表示j秒在i位置最大可以收到的数目. 转移方程:d[i][j]=max(dp[i-1][j],dp[i-1][j-1],dp[i-1][j+ ...
- 二维动态规划——Palindrome
Palindrome Description A palindrome is a symmetrical string, that is, a string read identically from ...
- LeetCode 笔记系列 20 Interleaving String [动态规划的抽象]
题目: Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. For example,Given: ...
- LeetCode之“动态规划”:Interleaving String
题目链接 题目要求: Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2. For example ...
- [LeetCode] Interleaving String - 交织的字符串
题目如下:https://oj.leetcode.com/problems/interleaving-string/ Given s1, s2, s3, find whether s3 is form ...
随机推荐
- 使用Jetty搭建Java Websocket Server,实现图像传输
https://my.oschina.net/yushulx/blog/298140 How to Implement a Java WebSocket Server for Image Transm ...
- Codeforces Round #369 (Div. 2) C. Coloring Trees (DP)
C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Python 100例(上)
如果你已经把基础看完,可以尝试一下看看以下例子了,如果不会做也不要紧,你要尝试手动把所有的代码都敲一边.别嫌麻烦,因为都是从麻烦到简单的. 实例1: 题目:有1.2.3.4个数字,能组成多少个相互不同 ...
- android systemUI--Notification 整理
PendingIntent Intent是一个意图,一个描述了想要启动一个Activity.Broadcast或是Service的意图.它主要持有的信息是它想要启动的组件(Activity.Broad ...
- Linux中cat、more、less、tail、head命令的区别
一.cat 显示文件连接文件内容的工具 cat 是一个文本文件(查看)和(连接)工具,通常与more搭配使用,与more不同的是cat可以合并文件.查看一个文件的内容,用cat比较简单,就是cat后面 ...
- Java设计模式遵循的七大原则
最近几年来,人们踊跃的提倡和使用设计模式,其根本原因就是为了实现代码的复用性,增加代码的可维护性.设计模式的实现遵循了一些原则,从而达到代码的复用性及增加可维护性的目的,设计模式对理解面向对象的三大特 ...
- webservice-概念性学习(一)
以下是本人原创,如若转载和使用请注明转载地址.本博客信息切勿用于商业,可以个人使用,若喜欢我的博客,请关注我,谢谢!博客地址 学习webservice之前呢,我想说我们先学习以下的知识,对你以后的学习 ...
- Bestcoder #80
首先吐槽一下,ca爷出的这套题到处都是坑,bestcoder变成besthack,Ranting已经掉得不能看了 A题: 链接:http://acm.hdu.edu.cn/showproblem.ph ...
- Git for Windows 工具下载及配置
前言,关于git工具的帖子:http://cn.v2ex.com/t/225027 最终选择了git for windows这个工具,路径为:https://git-for-windows.githu ...
- Handler和Message以及Looper之间的三角关系
说到Handler想必大家都经常用到,在非UI线程更新UI那可是利器,用起来也非常容易上手 从使用上来说,我们只需要关注sendMessage和handleMessage即可 所以我们先从Handle ...