#include<iostream>

#include<iomanip>

using
namespace std;

int main()

{

double
x,y,yn,h,temp,f;

x=0;      //对x赋初值

y=1;      //对y赋初值

h=0.1;      //步长设置为0.1

cout<<setiosflags(ios::left);

cout<<setw(20)<<"y的计算值";

cout<<setw(20)<<"y的理论值";

cout<<setw(20)<<"x的值";

cout<<setw(20)<<"误差"<<endl;

cout<<setw(20)<<y;

cout<<setw(20)<<y;

cout<<setw(20)<<x;

cout<<setw(20)<<0<<endl;

for
(int i=0;i<10;i++)

{

temp=y;      //每次迭代之前y未变化的值,用于后面的计算

y=y+h*(y-2*x/y);      //使y显化

f=y-2*x/y;      //保存未改变的f(x,y)的值

x+=h;

do

{

yn=y;

y=temp+h/2*(f+(y-(2*x/y)));

}

while
(abs(yn-y)>0.0000001);

cout<<setw(20)<<y;      //输出y的新值

cout<<setw(20)<<sqrtf(1+2*x);      //计算y的理论值

cout<<setw(20)<<x;      //输出x的新值

cout<<setw(20)<<abs(y-sqrtf(1+2*x))<<endl;      //计算误差

}

return
0;

}

梯形法求解常微分方程(c++)的更多相关文章

  1. 破圈法求解最小生成树c语言实现(已验证)

    破圈法求解最小生成树c语言实现(已验证) 下面是算法伪代码,每一个算法都取一个图作为输入,并返回一个边集T. 对该算法,证明T是一棵最小生成树,或者证明T不是一棵最小生成树.此外,对于每个算法,无论它 ...

  2. POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)

    题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...

  3. Coursera在线学习---第一节.梯度下降法与正规方程法求解模型参数比较

    一.梯度下降法 优点:即使特征变量的维度n很大,该方法依然很有效 缺点:1)需要选择学习速率α 2)需要多次迭代 二.正规方程法(Normal Equation) 该方法可以一次性求解参数Θ 优点:1 ...

  4. 逆波兰法求解数学表达示(C++)

    主要是栈的应用,里面有两个函数deleteSpace(),stringToDouble()在我还有一篇博客其中:对string的一些扩展函数. 本程序仅仅是主要的功能实现,没有差错控制. #inclu ...

  5. 0-1背包问题——回溯法求解【Python】

    回溯法求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 回溯法核心:能进则进,进不了则换,换不了则退.(按照 ...

  6. 0-1背包问题蛮力法求解(c++版本)

    // 0.1背包求解.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream>   #define ...

  7. 算法——八皇后问题(eight queen puzzle)之回溯法求解

    八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...

  8. USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)

    Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...

  9. MATLAB求解常微分方程:ode45函数与dsolve函数

    ode45函数无法求出解析解,dsolve可以求出解析解(若有),但是速度较慢. 1.      ode45函数 ①求一阶常微分方程的初值问题 [t,y] = ode45(@(t,y)y-2*t/y, ...

随机推荐

  1. 05、MySQL—字符集

    1.字符编码概念 字符(Character)是各种文字和符号的总称,包括各国家文字.标点符号.图形符号.数字等. 在计算机中所看到的任何内容都是字符构成的. 字符编码(character code)是 ...

  2. Spring 实战 第4版 读书笔记

    第一部分:Spring的核心 1.第一章:Spring之旅 1.1.简化Java开发 创建Spring的主要目的是用来替代更加重量级的企业级Java技术,尤其是EJB.相对EJB来说,Spring提供 ...

  3. Ubuntu安装32位程序兼容包

    有的交叉编译工具链是32位的,经常会遇到安装完成之后提示好不到,这时候需要安装32位兼容程序,使用以下命令安装: sudo apt-get update sudo apt install gcc-mu ...

  4. ubuntu16.04部署vsftpd

    问题描述: 之前在centos6/7可以快速构建vsftpd服务,在ubuntu上频繁出错.最后发现是vsftpd版本比较新(新增安全特性导致的) 问题解决: 加上对应参数即可解决问题 window资 ...

  5. mysql多实例启动过程

    单机多实例,是基本的测试环境 01.myslq提供单机管理多节点 02.启动mysql多实例 03.观察进程

  6. jenkins使用邮件功能

    jenkins发送邮件 在日常构建后,需要及时将构建结果发送给相应的人员.这时就可以使用jenkins自带的邮件配置系统. 1 开通邮箱的SMTP服务,需要发送短信验证开启 2 进入"系统管 ...

  7. 《linux就该这么学》课堂笔记02 虚拟机安装使用

    这节学习了虚拟机安装RHEL系统,了解了shell.以及命令的格式            

  8. Sonar中的坏习惯详解

    22种代码的坏味道,一句话概括: 如果一段代码是不稳定或者有一些潜在问题的,那么代码往往会包含一些明显的痕迹. 正如食物要腐坏之前,经常会发出一些异味一样. 我们管这些痕迹叫做“代码异味”. 参考资料 ...

  9. shell 脚本监控linux

    [root@dn3 data]# cat monitor.sh #!/bin/bash cpu_idle=$(top -n2|grep 'Cpu'|tail -n 1|awk '{print $8}' ...

  10. 牛客1024B 石头游戏

    题目描述 石头游戏在一个 \(n\) 行 \(m\) 列 \((1\leq n,m \leq 8)(1≤n,m≤8)\) 的网格上进行,每个格子对应一种操作序列,操作序列至多有10种,分别用0~9这1 ...