梯形法求解常微分方程(c++)
#include<iostream>
#include<iomanip>
using
namespace std;
int main()
{
double
x,y,yn,h,temp,f;
x=0; //对x赋初值
y=1; //对y赋初值
h=0.1; //步长设置为0.1
cout<<setiosflags(ios::left);
cout<<setw(20)<<"y的计算值";
cout<<setw(20)<<"y的理论值";
cout<<setw(20)<<"x的值";
cout<<setw(20)<<"误差"<<endl;
cout<<setw(20)<<y;
cout<<setw(20)<<y;
cout<<setw(20)<<x;
cout<<setw(20)<<0<<endl;
for
(int i=0;i<10;i++)
{
temp=y; //每次迭代之前y未变化的值,用于后面的计算
y=y+h*(y-2*x/y); //使y显化
f=y-2*x/y; //保存未改变的f(x,y)的值
x+=h;
do
{
yn=y;
y=temp+h/2*(f+(y-(2*x/y)));
}
while
(abs(yn-y)>0.0000001);
cout<<setw(20)<<y; //输出y的新值
cout<<setw(20)<<sqrtf(1+2*x); //计算y的理论值
cout<<setw(20)<<x; //输出x的新值
cout<<setw(20)<<abs(y-sqrtf(1+2*x))<<endl; //计算误差
}
return
0;
}
梯形法求解常微分方程(c++)的更多相关文章
- 破圈法求解最小生成树c语言实现(已验证)
破圈法求解最小生成树c语言实现(已验证) 下面是算法伪代码,每一个算法都取一个图作为输入,并返回一个边集T. 对该算法,证明T是一棵最小生成树,或者证明T不是一棵最小生成树.此外,对于每个算法,无论它 ...
- POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)
题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...
- Coursera在线学习---第一节.梯度下降法与正规方程法求解模型参数比较
一.梯度下降法 优点:即使特征变量的维度n很大,该方法依然很有效 缺点:1)需要选择学习速率α 2)需要多次迭代 二.正规方程法(Normal Equation) 该方法可以一次性求解参数Θ 优点:1 ...
- 逆波兰法求解数学表达示(C++)
主要是栈的应用,里面有两个函数deleteSpace(),stringToDouble()在我还有一篇博客其中:对string的一些扩展函数. 本程序仅仅是主要的功能实现,没有差错控制. #inclu ...
- 0-1背包问题——回溯法求解【Python】
回溯法求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 回溯法核心:能进则进,进不了则换,换不了则退.(按照 ...
- 0-1背包问题蛮力法求解(c++版本)
// 0.1背包求解.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> #define ...
- 算法——八皇后问题(eight queen puzzle)之回溯法求解
八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- MATLAB求解常微分方程:ode45函数与dsolve函数
ode45函数无法求出解析解,dsolve可以求出解析解(若有),但是速度较慢. 1. ode45函数 ①求一阶常微分方程的初值问题 [t,y] = ode45(@(t,y)y-2*t/y, ...
随机推荐
- Java自学-操作符 三元操作符
Java的三元操作符 三元操作符 ?: 示例 1 : 三元操作符 语法:表达式?值1:值2 如果表达式为真 返回值1 如果表达式为假 返回值2 public class HelloWorld { pu ...
- vue-cli 移动端项目如何在手机上调试预览
这里分享下如何在webpack工具构建下的vue项目,在手机端调试和预览,言归正传. 1.电脑和手机连接到同一个WIFI a.台式电脑和手机同时链接一个路由器,使用同一个wifi: b.笔记本也可以直 ...
- scrapy随机切换user-agent
使用github的 scrapy-fake-useragent 不用自己改源码继承自带的userAgent中间件 只需要安装后增加配置即可 https://github.com/alecxe/scr ...
- Docker搭建私用仓库
搭建私有仓库 # 1.查找registry,官方的私用仓库镜像 docker search registry # 2.下载私有仓库镜像 docker pull registry # 3.创建并后台运行 ...
- Windows Cmd 命令管理服务
今天在Windows 干净环境上安装软件过程中,安装完成后,发现部署在IIS 上的网站无法使用,提示 "您提交的参数有误!,请重新提交" 纯净的windows 7 x64位环境, ...
- Linux操作系统-CentOS6启动流程和服务管理
Linux操作系统-CentOS6启动流程和服务管理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Linux组成 1>.Linux: kernel+rootfs ker ...
- Gerrit服务器权限管理
Gerrit服务器权限管理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Gerrit权限概述 1>.对象 Gerrit识别单个或多个人员集合. Gerrit不允许使用单 ...
- Codeforces I. Inna and Nine(组合)
题目描述: Inna and Nine time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Python的logging模块基本用法
Python 的 logging 模块的简单用法 在服务器部署时,往往都是在后台运行.当程序发生特定的错误时,我希望能够在日志中查询.因此这里熟悉以下 logging 模块的用法. logging 模 ...
- Product Oriented Recurrence(Codeforces Round #566 (Div. 2)E+矩阵快速幂+欧拉降幂)
传送门 题目 \[ \begin{aligned} &f_n=c^{2*n-6}f_{n-1}f_{n-2}f_{n-3}&\\ \end{aligned} \] 思路 我们通过迭代发 ...