#include<iostream>

#include<iomanip>

using
namespace std;

int main()

{

double
x,y,yn,h,temp,f;

x=0;      //对x赋初值

y=1;      //对y赋初值

h=0.1;      //步长设置为0.1

cout<<setiosflags(ios::left);

cout<<setw(20)<<"y的计算值";

cout<<setw(20)<<"y的理论值";

cout<<setw(20)<<"x的值";

cout<<setw(20)<<"误差"<<endl;

cout<<setw(20)<<y;

cout<<setw(20)<<y;

cout<<setw(20)<<x;

cout<<setw(20)<<0<<endl;

for
(int i=0;i<10;i++)

{

temp=y;      //每次迭代之前y未变化的值,用于后面的计算

y=y+h*(y-2*x/y);      //使y显化

f=y-2*x/y;      //保存未改变的f(x,y)的值

x+=h;

do

{

yn=y;

y=temp+h/2*(f+(y-(2*x/y)));

}

while
(abs(yn-y)>0.0000001);

cout<<setw(20)<<y;      //输出y的新值

cout<<setw(20)<<sqrtf(1+2*x);      //计算y的理论值

cout<<setw(20)<<x;      //输出x的新值

cout<<setw(20)<<abs(y-sqrtf(1+2*x))<<endl;      //计算误差

}

return
0;

}

梯形法求解常微分方程(c++)的更多相关文章

  1. 破圈法求解最小生成树c语言实现(已验证)

    破圈法求解最小生成树c语言实现(已验证) 下面是算法伪代码,每一个算法都取一个图作为输入,并返回一个边集T. 对该算法,证明T是一棵最小生成树,或者证明T不是一棵最小生成树.此外,对于每个算法,无论它 ...

  2. POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)

    题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...

  3. Coursera在线学习---第一节.梯度下降法与正规方程法求解模型参数比较

    一.梯度下降法 优点:即使特征变量的维度n很大,该方法依然很有效 缺点:1)需要选择学习速率α 2)需要多次迭代 二.正规方程法(Normal Equation) 该方法可以一次性求解参数Θ 优点:1 ...

  4. 逆波兰法求解数学表达示(C++)

    主要是栈的应用,里面有两个函数deleteSpace(),stringToDouble()在我还有一篇博客其中:对string的一些扩展函数. 本程序仅仅是主要的功能实现,没有差错控制. #inclu ...

  5. 0-1背包问题——回溯法求解【Python】

    回溯法求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 回溯法核心:能进则进,进不了则换,换不了则退.(按照 ...

  6. 0-1背包问题蛮力法求解(c++版本)

    // 0.1背包求解.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream>   #define ...

  7. 算法——八皇后问题(eight queen puzzle)之回溯法求解

    八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...

  8. USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)

    Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...

  9. MATLAB求解常微分方程:ode45函数与dsolve函数

    ode45函数无法求出解析解,dsolve可以求出解析解(若有),但是速度较慢. 1.      ode45函数 ①求一阶常微分方程的初值问题 [t,y] = ode45(@(t,y)y-2*t/y, ...

随机推荐

  1. php 数组去空

    1.preg_grep("/\S+/i", $data); 2.array_filter($data); 3.for($data $k = > $v) { if(!$v) u ...

  2. 交换ESCHAUNGE英语ESCHAUNGE交易所

    exchange From Middle English eschaunge, borrowed from Anglo-Norman eschaunge exchange 1.An act of ex ...

  3. 四级CET大学词汇六级备份

    Cet6六级中要考到法庭词汇的小故事  如何安排六级考试前的一个月1.每天按照我的要求去背单词2.做四套真题,词汇部分 只做词汇 3.做personal dictionary把真题中出现的所有不认识的 ...

  4. Linux“七大蠢”收录

    这个系列的文章,前段时间在微信公共平台(阿里技术嘉年华)上看过,写得很好. Linux"七大蠢"之一:万般皆文本 Linux"七大蠢"之二:处处有脚本 Linu ...

  5. windows安装redis服务

    下载地址: https://github.com/microsoftarchive/redis/releases 解压. git执行:

  6. day 02 作业 预科

    目录 作业 作业 ==1.什么是编程== 通过使用编程语言做一些事情,表达一些自己的想法. ==2.简述计算机五大组成.== 计算机由cpu ,运算器 ,控制器,存储器(外存,内存) 输入设备 输出设 ...

  7. 大数据集群环境 zookeeper集群环境安装

    大数据集群环境 zookeeper集群环境准备 zookeeper集群安装脚本,如果安装需要保持zookeeper保持相同目录,并且有可执行权限,需要准备如下 编写脚本: vi zkInstall.s ...

  8. 【Oracle RAC】Linux系统Oracle18c RAC安装配置详细记录过程(图文并茂)

    本文Oracle 18c GI/RAC on Oracle Linux step-by-step 的安装配置步骤,同时也包含dbca 创建数据库的过程. 1. 关闭SELINUX,防火墙vi /etc ...

  9. 【Spring Boot】Spring Boot之跨域解决方案

    一.什么是跨域 跨域,指的是从一个域名去请求另外一个域名的资源.即跨域名请求!跨域时,浏览器不能执行其他域名网站的脚本,是由浏览器的同源策略造成的,是浏览器施加的安全限制. 跨域的严格一点来讲就是只要 ...

  10. filter-mutate过滤插件

    之前的nginx日志使用grok匹配,但是后来发现nginx的日志中每个值之间都使用了分隔符"|",这下就可以使用mutate来分隔出每个字段的含义,同时还减少了运算. 描述 mu ...