梯形法求解常微分方程(c++)

#include<iostream>
#include<iomanip>
using
namespace std;
int main()
{
double
x,y,yn,h,temp,f;
x=0; //对x赋初值
y=1; //对y赋初值
h=0.1; //步长设置为0.1
cout<<setiosflags(ios::left);
cout<<setw(20)<<"y的计算值";
cout<<setw(20)<<"y的理论值";
cout<<setw(20)<<"x的值";
cout<<setw(20)<<"误差"<<endl;
cout<<setw(20)<<y;
cout<<setw(20)<<y;
cout<<setw(20)<<x;
cout<<setw(20)<<0<<endl;
for
(int i=0;i<10;i++)
{
temp=y; //每次迭代之前y未变化的值,用于后面的计算
y=y+h*(y-2*x/y); //使y显化
f=y-2*x/y; //保存未改变的f(x,y)的值
x+=h;
do
{
yn=y;
y=temp+h/2*(f+(y-(2*x/y)));
}
while
(abs(yn-y)>0.0000001);
cout<<setw(20)<<y; //输出y的新值
cout<<setw(20)<<sqrtf(1+2*x); //计算y的理论值
cout<<setw(20)<<x; //输出x的新值
cout<<setw(20)<<abs(y-sqrtf(1+2*x))<<endl; //计算误差
}
return
0;
}

梯形法求解常微分方程(c++)的更多相关文章
- 破圈法求解最小生成树c语言实现(已验证)
破圈法求解最小生成树c语言实现(已验证) 下面是算法伪代码,每一个算法都取一个图作为输入,并返回一个边集T. 对该算法,证明T是一棵最小生成树,或者证明T不是一棵最小生成树.此外,对于每个算法,无论它 ...
- POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)
题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...
- Coursera在线学习---第一节.梯度下降法与正规方程法求解模型参数比较
一.梯度下降法 优点:即使特征变量的维度n很大,该方法依然很有效 缺点:1)需要选择学习速率α 2)需要多次迭代 二.正规方程法(Normal Equation) 该方法可以一次性求解参数Θ 优点:1 ...
- 逆波兰法求解数学表达示(C++)
主要是栈的应用,里面有两个函数deleteSpace(),stringToDouble()在我还有一篇博客其中:对string的一些扩展函数. 本程序仅仅是主要的功能实现,没有差错控制. #inclu ...
- 0-1背包问题——回溯法求解【Python】
回溯法求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 回溯法核心:能进则进,进不了则换,换不了则退.(按照 ...
- 0-1背包问题蛮力法求解(c++版本)
// 0.1背包求解.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> #define ...
- 算法——八皇后问题(eight queen puzzle)之回溯法求解
八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- MATLAB求解常微分方程:ode45函数与dsolve函数
ode45函数无法求出解析解,dsolve可以求出解析解(若有),但是速度较慢. 1. ode45函数 ①求一阶常微分方程的初值问题 [t,y] = ode45(@(t,y)y-2*t/y, ...
随机推荐
- Mybatis中使用association进行关联的几种方式
这里以一对一单向关联为例.对使用或不使用association的配置进行举例. 实体类: @Data @ToString @NoArgsConstructor public class IdCard ...
- 文件包含漏洞File Inclusion
文件包含漏洞 目录遍历漏洞在国内外有许多不同的叫法,也可以叫做信息泄露漏洞.非授权文件包含漏洞等. 文件包含分类 LFI:本地文件包含(Local File Inclusion) RFI:远程文件包含 ...
- 【MySQL】数据库中间件Atlas
1.介绍 Atlas 是由 Qihoo 360公司Web平台部基础架构团队开发维护的一个基于MySQL协议的数据中间层项目.它在MySQL官方推出的MySQL-Proxy 0.8.2版本的基础上,修改 ...
- JAVA基础之DBUtils与连接池
利用DBUtils进一步简化JDBC数据库的增删改查的代码,同时利用从连接池中接取连接,进而进行简化和减少资源的消耗! 一.DBUtils: 1.DBUtils就是JDBC的简化开发工具包.需要项目导 ...
- koa2--nodemailer实现邮箱验证
依赖包安装: /** * koa-bodyparser用于把formData数据解析到ctx.request.body * 通过ctx.request.body访问请求的参数 * koa-redis用 ...
- SOFABoot&SOFATracer
SOFABoot快速开始 SOFABoot介绍 SOFABoot 是蚂蚁金服开源的基于 Spring Boot 的研发框架,它在 Spring Boot 的基础上,提供了诸如 Readiness Ch ...
- Android Scroller详解
在学习使用Scroller之前,需要明白scrollTo().scrollBy()方法. 一.View的scrollTo().scrollBy() scrollTo.scrollBy方法是View中的 ...
- ipc$ 空连接 net use
常用命令 [xxx]表示的内容,需要根据自己的需求更改 //建立空连接 > net use \\127.0.0.1\ipc$ //删除连接 > net use \\127.0.0.1\ip ...
- EF执行存储过程(转载)
https://blog.csdn.net/xiaouncle/article/details/82914255 相关文章: https://www.cnblogs.com/Coder-ru/arch ...
- MySQL AutoIncrement--自增锁模式
自增锁模式 在MYSQL 5.1.22版本前,自增列使用AUTO_INC Locking方式来实现,即采用一种特殊的表锁机制来保证并发插入下自增操作依然是串行操作,为提高插入效率,该锁会在插入语句完成 ...