对比度增强(二):直方图正规划与伽马变换 cv.normal()函数使用及原理
直方图正规化:
图像为I,宽为W,高为H,I(r,c)代表I的第r行第c列的灰度值;输出图像记为O,为使得输出图像的灰度值在[Omin,Omax]范围里,可用如下公式:
(1)
(2)
其中0≤r<H,0≤c<W。公式(1)是一个比列关系,变换后可为公式(2),即可求输出图像O(r,c)。
而Imin与Omin对应,此点(Imin,Omin)在线性方程上,则斜率:
将 (Imin,Omin)带入线性方程中, b值:
该方程变成:
最终可为:
正规化自己编写与使用normalize函数代码如下:
normalize函数代码:
import numpy as np
import cv2 as cv src=np.array([[1,2,3],[4,5,6]])
b=np.zeros((2,3))
# c=cv.normalize(src,dst=b,alpha=4,beta=0,norm_type=cv.NORM_L1) # L1范数
# c=cv.normalize(src,dst=b,alpha=4,beta=0,norm_type=cv.NORM_L2) # L2范数
# c=cv.normalize(src,dst=b,alpha=4,beta=0,norm_type=cv.NORM_INF) # 无穷范数
c=cv.normalize(src,b,20,255,norm_type=cv.NORM_MINMAX)
print('c=',c) 自己编写代码:
# 原始图像
IMAX=np.max(src)
IMIN=np.min(src)
OMIN,OMAX=20,255
A=float(OMAX-OMIN)/(IMAX-IMIN)
B=OMIN-A*IMIN
O=A*src+B
print('O=',O)
其验证结果,如下:
L1范数:图像矩阵中值的绝对值的和(L1)
L2范数:图像矩阵中值的平方和的开发(L2)
无穷范数:图像矩阵中值的绝对值的最大值(L3)
求得值简称:L
所有公式可表示:
对应代码:dst=cv.normalize(src,dst,alpha=1,beta=0,norm_type=cv.NORM_L1)
伽马变换:
0≤r<H,0≤c<W
当 =1时,图像不变。如果图像整体或者感兴趣区域较暗,则令0<
<1可以增加图像对比度;相反,如果图像整体或者感兴趣区域较亮,则
>1可以降低图像对比度。
对比度增强(二):直方图正规划与伽马变换 cv.normal()函数使用及原理的更多相关文章
- 图像增强算法(直方图均衡化、拉普拉斯、Log、伽马变换)
一.图像增强算法原理 图像增强算法常见于对图像的亮度.对比度.饱和度.色调等进行调节,增加其清晰度,减少噪点等.图像增强往往经过多个算法的组合,完成上述功能,比如图像去燥等同于低通滤波器,增加清晰度则 ...
- 基础图像处理之混合空间增强——(Java:拉普拉斯锐化、Sobel边缘检测、均值滤波、伽马变换)
相信看过冈萨雷斯第三版数字图像处理的童鞋都知道,里面涉及到了很多的基础图像处理的算法,今天,就专门借用其中一个混合空间增强的案例,来将常见的几种图像处理算法集合起来,看能发生什么样的化学反应 首先,通 ...
- 伽马变换(一些基本的灰度变换函数)基本原理及Python实现
1. 基本原理 变换形式 $$s=cr^{\gamma}$$ c与$\gamma$均为常数 可通过调整$\gamma$来调整该变换,最常用于伽马校正与对比度增强 2. 测试结果 图源自skimage ...
- OpenCV计算机视觉学习(3)——图像灰度线性变换与非线性变换(对数变换,伽马变换)
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 下面 ...
- C++数字图像处理(1)-伽马变换
https://blog.csdn.net/huqiang_823/article/details/80767019 1.算法原理 伽马变换(幂律变换)是常用的灰度变换,是一种简单的图像增强算法 ...
- (二)OpenCV-Python学习—对比度增强
·对于部分图像,会出现整体较暗或较亮的情况,这是由于图片的灰度值范围较小,即对比度低.实际应用中,通过绘制图片的灰度直方图,可以很明显的判断图片的灰度值分布,区分其对比度高低.对于对比度较低的图片,可 ...
- opencv----彩色图像对比度增强
图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法. 直方图拉伸和直方图均衡化是两种最常见的间接对比度增强方法. 直方图拉伸是通过对比度拉伸对直方图进行调整,从而“ ...
- SSE图像算法优化系列十九:一种局部Gamma校正对比度增强算法及其SSE优化。
这是一篇2010年比较古老的文章了,是在QQ群里一位群友提到的,无聊下载看了下,其实也没有啥高深的理论,抽空实现了下,虽然不高大上,还是花了点时间和心思优化了代码,既然这样,就顺便分享下优化的思路和经 ...
- ISP图像调试工程师——对比度增强(熟悉图像预处理和后处理技术)
经典对比度增强算法: http://blog.csdn.net/ebowtang/article/details/38236441
随机推荐
- 用肘方法确定 kmeans 聚类中簇的最佳数量
说明: KMeans 聚类中的超参数是 K,需要我们指定.K 值一方面可以结合具体业务来确定,另一方面可以通过肘方法来估计.K 参数的最优解是以成本函数最小化为目标,成本函数为各个类畸变程度之和,每个 ...
- PAT 乙级 1036.跟奥巴马一起编程 C++/Java
题目来源 美国总统奥巴马不仅呼吁所有人都学习编程,甚至以身作则编写代码,成为美国历史上首位编写计算机代码的总统.2014 年底,为庆祝“计算机科学教育周”正式启动,奥巴马编写了很简单的计算机代码:在屏 ...
- C++ 梳理:跑通简单程序
C++ 结合了三个编程流派: 过程式编程:C 特性,结构化语言,强调过程 面向对象编程:C++ 对于 C 语言的补充,一切皆对象,强调数据 泛型编程(generic programming):由 C+ ...
- 使用 python set 去重 速度到底是多快呢???
这次去测试一下 python 的set去重,速度怎么样? 我们要做的是把文件一次性读取到内存中,然后去重,输出去重的长度. 第一步:对 121w 条数据去重,看去重话费的时间 上证据: 第二步:对 1 ...
- 【reactNative 大杂烩 好文章汇总 】
1. React Native之打包 https://blog.csdn.net/xiangzhihong8/article/details/70162784
- NOIP 2008 火柴棒等式
洛谷 P1149 火柴棒等式 洛谷传送门 JDOJ 1540: [NOIP2008]火柴棒等式 T2 JDOJ传送门 Description 给你n根火柴棍,你可以拼出多少个形如"A+B=C ...
- USACO Hide and Seek
洛谷 P2951 [USACO09OPEN]捉迷藏Hide and Seek 洛谷传送门 JDOJ 2641: USACO 2009 Open Silver 1.Hide and Seek JDOJ传 ...
- 修改/etc/docker/daemon.json中的log-opts配置发现无效 docker 限制日志大小
https://colobu.com/2018/10/22/no-space-left-on-device-for-docker/ 在/etc/docker/daemon.json中修改或添加log- ...
- Scrapy笔记05- Item详解
Scrapy笔记05- Item详解 Item是保存结构数据的地方,Scrapy可以将解析结果以字典形式返回,但是Python中字典缺少结构,在大型爬虫系统中很不方便. Item提供了类字典的API, ...
- 拷贝插件 copy-webpack-plugin
用于拷贝文件或目录到输出目录中 https://blog.csdn.net/weixin_41643133/article/details/95489335 https://www.jianshu.c ...