import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model.logistic import LogisticRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt df = pd.read_csv('./sms.csv')
X_train_raw, X_test_raw, y_train, y_test = train_test_split(df['message'], df['label'], random_state=11)
vectorizer = TfidfVectorizer()
X_train = vectorizer.fit_transform(X_train_raw)
X_test = vectorizer.transform(X_test_raw)
classifier = LogisticRegression()
classifier.fit(X_train, y_train)
scores = cross_val_score(classifier, X_train, y_train, cv=5)
print('Accuracies: %s' % scores)
print('Mean accuracy: %s' % np.mean(scores))
Accuracies: [ 0.95221027  0.95454545  0.96172249  0.96052632  0.95209581]
Mean accuracy: 0.956220068309
precisions = cross_val_score(classifier, X_train, y_train, cv=5, scoring='precision')
print('Precision: %s' % np.mean(precisions))
recalls = cross_val_score(classifier, X_train, y_train, cv=5, scoring='recall')
print('Recall: %s' % np.mean(recalls))
f1s = cross_val_score(classifier, X_train, y_train, cv=5, scoring='f1')
print('F1 score: %s' % np.mean(f1s))
Precision: 0.992542742398
Recall: 0.683605030275
F1 score: 0.809067846627
F1是精确率和召回率的调和平均值。如果精确度为1,召回为0,那F1为0.还有F0.5和F2两种模型,分别偏重精确率和召回率。在一些场景下,召回率比精确率还更重要。 常用分类的对比
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report X, y = make_classification(
n_samples=5000, n_features=100, n_informative=20, n_clusters_per_class=2, random_state=11)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) print('决策树')
clf = DecisionTreeClassifier(random_state=11)
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions))
print('随机森林')
clf = RandomForestClassifier(n_estimators=10, random_state=11)
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions))
print('逻辑回归')
clf = LogisticRegression()
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions))
print('AdaBoost')
clf = AdaBoostClassifier(n_estimators=50, random_state=11)
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions))
print('KNN近邻')
clf = KNeighborsClassifier(n_neighbors=3)
clf.fit(X_train,y_train)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions))
print('SVM支持向量机')
clf = SVC(kernel='rbf', C=100, gamma=0.1).fit(X, y)
predictions = clf.predict(X_test)
print(classification_report(y_test, predictions))
结果
决策树
precision recall f1-score support
0 0.80 0.76 0.78 634
1 0.76 0.80 0.78 616 accuracy 0.78 1250
macro avg 0.78 0.78 0.78 1250
weighted avg 0.78 0.78 0.78 1250 随机森林
precision recall f1-score support
0 0.79 0.86 0.82 634
1 0.84 0.76 0.80 616 accuracy 0.81 1250
macro avg 0.82 0.81 0.81 1250
weighted avg 0.82 0.81 0.81 1250 逻辑回归
precision recall f1-score support
0 0.82 0.85 0.84 634
1 0.84 0.81 0.83 616 accuracy 0.83 1250
macro avg 0.83 0.83 0.83 1250
weighted avg 0.83 0.83 0.83 1250

AdaBoost
precision recall f1-score support

0 0.83 0.85 0.84 634
1 0.84 0.82 0.83 616

accuracy 0.83 1250
macro avg 0.83 0.83 0.83 1250
weighted avg 0.83 0.83 0.83 1250

KNN近邻
precision recall f1-score support

0 0.93 0.93 0.93 634
1 0.93 0.93 0.93 616

accuracy 0.93 1250
macro avg 0.93 0.93 0.93 1250
weighted avg 0.93 0.93 0.93 1250

SVM支持向量机
precision recall f1-score support

0 1.00 1.00 1.00 634
1 1.00 1.00 1.00 616

accuracy 1.00 1250
macro avg 1.00 1.00 1.00 1250
weighted avg 1.00 1.00 1.00 1250

分类的性能评估:准确率、精确率、Recall召回率、F1、F2的更多相关文章

  1. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

    yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...

  2. 二分类算法的评价指标:准确率、精准率、召回率、混淆矩阵、AUC

    评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. ...

  3. 准确率、精确率、召回率、F1

    在搭建一个AI模型或者是机器学习模型的时候怎么去评估模型,比如我们前期讲的利用朴素贝叶斯算法做的垃圾邮件分类算法,我们如何取评估它.我们需要一套完整的评估方法对我们的模型进行正确的评估,如果模型效果比 ...

  4. Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives.

    Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);在信息检索(如搜索引擎).自然语言处理和检测分类中经常会使用这些参数. Precision:被检测出来的信息 ...

  5. Recall(召回率);Precision(准确率);F1-Meature(综合评价指标);true positives;false positives;false negatives..

    转自:http://blog.csdn.net/t710smgtwoshima/article/details/8215037   Recall(召回率);Precision(准确率);F1-Meat ...

  6. 机器学习classification_report方法及precision精确率和recall召回率 说明

    classification_report简介 sklearn中的classification_report函数用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息. 主要 ...

  7. 一文让你彻底理解准确率,精准率,召回率,真正率,假正率,ROC/AUC

    参考资料:https://zhuanlan.zhihu.com/p/46714763 ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到).其实,理解它并不是非常难 ...

  8. 精确率与召回率,RoC曲线与PR曲线

    在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口 ...

  9. 机器学习性能指标精确率、召回率、F1值、ROC、PRC与AUC--周振洋

    机器学习性能指标精确率.召回率.F1值.ROC.PRC与AUC 精确率.召回率.F1.AUC和ROC曲线都是评价模型好坏的指标,那么它们之间有什么不同,又有什么联系呢.下面让我们分别来看一下这几个指标 ...

随机推荐

  1. Linux-负载均衡HAproxy

    负载均衡之HAProxy 现在常用的三大开源软件负载均衡器分别是Nginx.LVS.HAProxy.三大软件特点如下: LVS负载均衡的特点: ()抗负载能力强,抗负载能力强.性能高.能达到F5硬件的 ...

  2. asp.net core 默认采用小驼峰命名和自定义模型验证

    services.AddMvc(options => { options.Filters.Add<ApiExceptionAttribute>(); }).SetCompatibil ...

  3. idea中自动deployment的步骤

  4. spring cloud (一) 服务注册中心 Eueka

    1 pom.xml 添加依赖包 <dependency> <groupId>org.springframework.cloud</groupId> <arti ...

  5. C#写的WebServices可运行于树莓派

    阅读目录 Raspkate - 基于.NET的可运行于树莓派的轻量型Web服务器 Raspkate项目 演示 回到目录 Raspkate - 基于.NET的可运行于树莓派的轻量型Web服务器   最近 ...

  6. 《Coderxiaoban团队》团队作业5:项目需求分析改进与系统设计

    实验八 <Coderxiaoban团队>团队作业5:项目需求分析改进与系统设计 项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 团队作业5:项目需求分析改进与 ...

  7. 08.vue-router动态路由匹配

    动态匹配路由的基本用法 思考: <!-有如下3个路由链接.-> <router-link to="/user/1">User1</router-lin ...

  8. vscode——如何对MarkDown文件进行预览

    前言 一般都是用Typora直接进行编写了,今天恰好在vs中写完代码,就需要编辑文档,这里就记录下如何预览吧 步骤 ctrl+shift+p打开命令面板,然后输入markdowm->选择在侧边打 ...

  9. Celery + Redis 的探究

    Celery + Redis 的探究 文本尝试研究,使用 redis 作为 celery 的 broker 时,celery 的交互操作同 redis 中数据记录的关联关系. 不在乎过程的,可以直接看 ...

  10. Codeforces Round #493 (Div. 2) 【A,B,C】

    简单思维题 #include<bits/stdc++.h> using namespace std; #define int long long #define inf 0x3f3f3f3 ...