链接:

https://vjudge.net/problem/LightOJ-1410

题意:

In a 2D plane N persons are standing and each of them has a gun in his hand. The plane is so big that the persons can be considered as points and their locations are given as Cartesian coordinates. Each of the N persons fire the gun in his hand exactly once and no two of them fire at the same or similar time (the sound of two gun shots are never heard at the same time by anyone so no sound is missed due to concurrency). The hearing ability of all these persons is exactly same. That means if one person can hear a sound at distance R1, so can every other person and if one person cannot hear a sound at distance R2 the other N-1 persons cannot hear a sound at distance R2 as well.

The N persons are numbered from 1 to N. After all the guns are fired, all of them are asked how many gun shots they have heard (not including their own shot) and they give their verdict. It is not possible for you to determine whether their verdicts are true but it is possible for you to judge if their verdicts are consistent. For example, look at the figure above. There are five persons and their coordinates are (1, 2), (3, 1), (5, 1), (6, 3) and (1, 5) and they are numbered as 1, 2, 3, 4 and 5 respectively. After all five of them have shot their guns, you ask them how many shots each of them have heard. Now if there response is 1, 1, 1, 2 and 1 respectively then you can represent it as (1, 1, 1, 2, 1). But this is an inconsistent verdict because if person 4 hears 2 shots then he must have heard the shot fired by person 2, then obviously person 2 must have heard the shot fired by person 1, 3 and 4 (person 1 and 3 are nearer to person 2 than person 4). But their opinions show that Person 2 says that he has heard only 1 shot. On the other hand (1, 2, 2, 1, 0) is a consistent verdict for this scenario so is (2, 2, 2, 1, 1). In this scenario (5, 5, 5, 4, 4) is not a consistent verdict because a person can hear at most 4 shots.

Given the locations of N persons, your job is to find the total number of different consistent verdicts for that scenario. Two verdicts are different if opinion of at least one person is different.

思路:

计算任意两点距离,不同种类数就是距离数

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<math.h>
#include<vector>
#include<map> using namespace std;
typedef long long LL;
const int INF = 1e9; const int MAXN = 710;
const int MOD = 1e9+7; int x[MAXN], y[MAXN];
int n;
int len[MAXN*MAXN]; int GetLen(int i, int j)
{
return (x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
} int main()
{
int t, cnt = 0;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cnt);
scanf("%d", &n);
for (int i = 1;i <= n;i++)
scanf("%d%d", &x[i], &y[i]);
int pos = 0;
for (int i = 1;i <= n;i++)
{
for (int j = i+1;j <= n;j++)
len[++pos] = GetLen(i, j);
}
sort(len+1, len+1+pos);
int res = unique(len+1, len+1+pos)-(len+1);
printf(" %d\n", res+1);
} return 0;
}

LightOJ - 1410 - Consistent Verdicts(规律)的更多相关文章

  1. 1410 - Consistent Verdicts(规律)

    1410 - Consistent Verdicts   PDF (English) Statistics Forum Time Limit: 5 second(s) Memory Limit: 32 ...

  2. LightOJ 1410 Consistent Verdicts(找规律)

    题目链接:https://vjudge.net/contest/28079#problem/Q 题目大意:题目描述很长很吓人,大概的意思就是有n个坐标代表n个人的位置,每个人听力都是一样的,每人发出一 ...

  3. Fibsieve`s Fantabulous Birthday LightOJ - 1008(找规律。。)

    Description 某只同学在生日宴上得到了一个N×N玻璃棋盘,每个单元格都有灯.每一秒钟棋盘会有一个单元格被点亮然后熄灭.棋盘中的单元格将以图中所示的顺序点亮.每个单元格上标记的是它在第几秒被点 ...

  4. Harmonic Number (II) LightOJ - 1245 (找规律?。。。)

    题意: 求前n项的n/i  的和 只取整数部分 暴力肯定超时...然后 ...现在的人真聪明...我真蠢 觉得还是别人的题意比较清晰 比如n=100的话,i=4时n/i等于25,i=5时n/i等于20 ...

  5. Trailing Zeroes (III) LightOJ - 1138 不找规律-理智推断-二分

    其实有几个尾零代表10的几次方但是10=2*510^n=2^n*5^n2增长的远比5快,所以只用考虑N!中有几个5就行了 代码看别人的: https://blog.csdn.net/qq_422797 ...

  6. Trailing Zeroes (III) LightOJ - 1138 二分+找规律

    Time Limit: 2 second(s) Memory Limit: 32 MB You task is to find minimal natural number N, so that N! ...

  7. lightoj--1410--Consistent Verdicts(技巧)

    Consistent Verdicts Time Limit: 5000MS   Memory Limit: 32768KB   64bit IO Format: %lld & %llu Su ...

  8. 初次使用SQL调优建议工具--SQL Tuning Advisor

    在10g中,Oracle推出了自己的SQL优化辅助工具: SQL优化器(SQL Tuning Advisor :STA),它是新的DBMS_SQLTUNE包. 使用STA一定要保证优化器是CBO模式下 ...

  9. LightOj 1245 --- Harmonic Number (II)找规律

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1245 题意就是求 n/i (1<=i<=n) 的取整的和这就是到找规律的题 ...

随机推荐

  1. 顺序表习题(1)-打印非递减数组a与b的升序并集(去除重复元素)

    void Print_Union(SqList a,SqList b) { , q = ; //初始化指针 ; //记录上一次打印的元素 while (p!=a.length&&q!= ...

  2. Zabbix案例实践|Zabbix屏蔽告警

    近期项目中,客户要求在凌晨00:00到02:00的CPU屏蔽虚拟化监控上ESXI的红色告警,红色告警是由于某台vmCPU利用率过高而产生的.做法如下:1. 找到红色告警的触发器,通过触发器找到监控项, ...

  3. day35——生产者消费者模型、线程

    day35 进程:生产者消费者模型 编程思想,模型,设计模式,理论等等,都是交给你一种编程的方法,以后你遇到类似的情况,套用即可 生产者消费者模型的三要素 生产者:产生数据的 消费者:接收数据做进一步 ...

  4. 爬虫请求库之selenium

    一.介绍 selenium最初是一个自动化测试工具,而爬虫中使用它主要是为了解决requests无法直接执行JavaScript代码的问题 selenium本质是通过驱动浏览器,完全模拟浏览器的操作, ...

  5. xorm -Exist方法实例

    判断某个记录是否存在可以使用Exist, 相比Get,Exist性能更好. package main import ( "fmt" _ "github.com/go-sq ...

  6. Spring Cloud--实现Eureka的高可用(Eureka集群搭建)实例

    将10086注册到10087上: 再在10086服务的基础上复制一个Eureka的服务,端口为10087,将其注册到10086上: application-name的名称保持一致,只是一个服务的两个实 ...

  7. pdfplumber模块初始用

    import pdfplumber import re def pdf_read(): pdf=pdfplumber.open('文件路径'")#文件路径,读取文件 page0=pdf.pa ...

  8. webapi session

    webapi中使用session 修改global.cs里面的内容 using System; using System.Web; using System.Web.Routing; using Sy ...

  9. python 直角图标生成圆角图标

    参考链接:https://stackoverflow.com/questions/11287402/how-to-round-corner-a-logo-without-white-backgroun ...

  10. mybatis-plus代码生成,实体类不生成父类属性

    一.参考文档: 官方文档其实说的很清楚了,可能有个别地方有点不太清楚. mybatis-plus官方: https://mp.baomidou.com/guide/generator.html 模版引 ...