链接:

https://vjudge.net/problem/LightOJ-1410

题意:

In a 2D plane N persons are standing and each of them has a gun in his hand. The plane is so big that the persons can be considered as points and their locations are given as Cartesian coordinates. Each of the N persons fire the gun in his hand exactly once and no two of them fire at the same or similar time (the sound of two gun shots are never heard at the same time by anyone so no sound is missed due to concurrency). The hearing ability of all these persons is exactly same. That means if one person can hear a sound at distance R1, so can every other person and if one person cannot hear a sound at distance R2 the other N-1 persons cannot hear a sound at distance R2 as well.

The N persons are numbered from 1 to N. After all the guns are fired, all of them are asked how many gun shots they have heard (not including their own shot) and they give their verdict. It is not possible for you to determine whether their verdicts are true but it is possible for you to judge if their verdicts are consistent. For example, look at the figure above. There are five persons and their coordinates are (1, 2), (3, 1), (5, 1), (6, 3) and (1, 5) and they are numbered as 1, 2, 3, 4 and 5 respectively. After all five of them have shot their guns, you ask them how many shots each of them have heard. Now if there response is 1, 1, 1, 2 and 1 respectively then you can represent it as (1, 1, 1, 2, 1). But this is an inconsistent verdict because if person 4 hears 2 shots then he must have heard the shot fired by person 2, then obviously person 2 must have heard the shot fired by person 1, 3 and 4 (person 1 and 3 are nearer to person 2 than person 4). But their opinions show that Person 2 says that he has heard only 1 shot. On the other hand (1, 2, 2, 1, 0) is a consistent verdict for this scenario so is (2, 2, 2, 1, 1). In this scenario (5, 5, 5, 4, 4) is not a consistent verdict because a person can hear at most 4 shots.

Given the locations of N persons, your job is to find the total number of different consistent verdicts for that scenario. Two verdicts are different if opinion of at least one person is different.

思路:

计算任意两点距离,不同种类数就是距离数

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<math.h>
#include<vector>
#include<map> using namespace std;
typedef long long LL;
const int INF = 1e9; const int MAXN = 710;
const int MOD = 1e9+7; int x[MAXN], y[MAXN];
int n;
int len[MAXN*MAXN]; int GetLen(int i, int j)
{
return (x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
} int main()
{
int t, cnt = 0;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cnt);
scanf("%d", &n);
for (int i = 1;i <= n;i++)
scanf("%d%d", &x[i], &y[i]);
int pos = 0;
for (int i = 1;i <= n;i++)
{
for (int j = i+1;j <= n;j++)
len[++pos] = GetLen(i, j);
}
sort(len+1, len+1+pos);
int res = unique(len+1, len+1+pos)-(len+1);
printf(" %d\n", res+1);
} return 0;
}

LightOJ - 1410 - Consistent Verdicts(规律)的更多相关文章

  1. 1410 - Consistent Verdicts(规律)

    1410 - Consistent Verdicts   PDF (English) Statistics Forum Time Limit: 5 second(s) Memory Limit: 32 ...

  2. LightOJ 1410 Consistent Verdicts(找规律)

    题目链接:https://vjudge.net/contest/28079#problem/Q 题目大意:题目描述很长很吓人,大概的意思就是有n个坐标代表n个人的位置,每个人听力都是一样的,每人发出一 ...

  3. Fibsieve`s Fantabulous Birthday LightOJ - 1008(找规律。。)

    Description 某只同学在生日宴上得到了一个N×N玻璃棋盘,每个单元格都有灯.每一秒钟棋盘会有一个单元格被点亮然后熄灭.棋盘中的单元格将以图中所示的顺序点亮.每个单元格上标记的是它在第几秒被点 ...

  4. Harmonic Number (II) LightOJ - 1245 (找规律?。。。)

    题意: 求前n项的n/i  的和 只取整数部分 暴力肯定超时...然后 ...现在的人真聪明...我真蠢 觉得还是别人的题意比较清晰 比如n=100的话,i=4时n/i等于25,i=5时n/i等于20 ...

  5. Trailing Zeroes (III) LightOJ - 1138 不找规律-理智推断-二分

    其实有几个尾零代表10的几次方但是10=2*510^n=2^n*5^n2增长的远比5快,所以只用考虑N!中有几个5就行了 代码看别人的: https://blog.csdn.net/qq_422797 ...

  6. Trailing Zeroes (III) LightOJ - 1138 二分+找规律

    Time Limit: 2 second(s) Memory Limit: 32 MB You task is to find minimal natural number N, so that N! ...

  7. lightoj--1410--Consistent Verdicts(技巧)

    Consistent Verdicts Time Limit: 5000MS   Memory Limit: 32768KB   64bit IO Format: %lld & %llu Su ...

  8. 初次使用SQL调优建议工具--SQL Tuning Advisor

    在10g中,Oracle推出了自己的SQL优化辅助工具: SQL优化器(SQL Tuning Advisor :STA),它是新的DBMS_SQLTUNE包. 使用STA一定要保证优化器是CBO模式下 ...

  9. LightOj 1245 --- Harmonic Number (II)找规律

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1245 题意就是求 n/i (1<=i<=n) 的取整的和这就是到找规律的题 ...

随机推荐

  1. T-SQL行列相互转换命令:PIVOT和UNPIVOT使用详解

    最近在维护一个ERP 做二次开发 ,在查找数据源的时候看到前辈写的SQL ,自己能力有限 ,就在网上找找有关这几个关键字的使用方法.做出随笔以做学习之用 T-SQL语句中,PIVOT命令可以实现数据表 ...

  2. gin - 读取Body后再次赋值

    这样就不影响后面读取了

  3. php位运算及其高级应用

    我们之前学过逻辑与(&&)      条件1 && 条件2 当两边条件同时成立时候返回1 逻辑或(||)         条件1 || 条件2    当两边条件只要有一 ...

  4. html2canvas以及domtoimage的使用踩坑总结 动态获取的二维码失效如何生成海报

    //判断手机为安卓还是ios 安卓html2canvas方法 ios系统dom-to-image方法 $(".code").click(function() { var u = n ...

  5. GZOI/GXOI2019

    陆陆续续做完了-- 与或和(单调栈) 这是一道一眼题-- 看到位运算,按位考虑贡献.对于每一位,将矩阵中的元素变为"当前元素的这一位是否为\(1\)",那么原矩阵变为\(01\)矩 ...

  6. 雪花算法,生成分布式唯一ID

    2.3 基于算法实现 [转载] 这里介绍下Twitter的Snowflake算法——snowflake,它把时间戳,工作机器id,序列号组合在一起,以保证在分布式系统中唯一性和自增性. snowfla ...

  7. 有助于改善性能的Java代码技巧

    前言 程序的性能受到代码质量的直接影响.这次主要介绍一些代码编写的小技巧和惯例.虽然看起来有些是微不足道的编程技巧,却可能为系统性能带来成倍的提升,因此还是值得关注的. 慎用异常 在Java开发中,经 ...

  8. ByteBuf源码

    ByteBuf是顶层的抽象类,定义了用于传输数据的ByteBuf需要的方法和属性. AbstractByteBuf 直接继承ByteBuf,一些公共属性和方法的公共逻辑会在这里定义.例如虽然不同性质的 ...

  9. VS 引用dll版本冲突问题

    1.删除项目中的对应引用: 2.如果是有用到NetGet引用的删除项目中的packages里面的对应包文件: 3.如果是在NetGet中引用的注释项目中packages.config对应的插件名: 4 ...

  10. 【layui】layer.photos 相册层动态生成Img 中出现的问题的解决方案

    layui版本:2.5.5 参照文档:https://www.jianshu.com/p/c594811fa882 他的3.8的解决方案有一些调整因为发现他的解决方式有些繁琐而最新的2.5.5版本中有 ...