题意

给你 $n$ 个 $w_i$ 和一个数 $p$,$q$个询问,每次询问一个区间 $[l,r] $,求 $w_l ^{w_{l+1}^{{\vdots}^{w_r}}} \ \% p$

分析

由扩展欧拉定理:

$$a^b\equiv \begin{cases} a^{b\%\phi(p)}~~~~~~~~~~~gcd(a,p)=1\\ a^b~~~~~~~~~~~~~~~~~~gcd(a,p)\neq1,b<\phi(p)\\ a^{b\%\phi(p)+\phi(p)}~~~~gcd(a,p)\neq1,b\geq\phi(p) \end{cases}~~~~~~~(mod~p)$$

与BZOJ 3384类似,但是在BZOJ 3384中,次方是无限的,所以说指数一定大于 $\varphi(p)$,但是这道题中指数不一定大于 $\varphi(p)$,需要重写 Mod。

phi需要记忆话,不然会超时。

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int maxn = 1e5 + ;
ll n, p, a[maxn];
unordered_map<int, int>phi; ll Mod(ll x, ll mod)
{
return x < mod ? x : x % mod + mod;
} ll euler_phi(ll n)
{
ll m = (ll)sqrt(n + 0.5);
ll ans = n;
for (ll i = ; i <= m; i++)
{
if (n % i == )
{
ans = ans / i * (i - );
while (n % i == ) n /= i; //除尽
}
}
if (n > ) ans = ans / n * (n - ); //剩下的不为1,也是素数
return ans;
} ll get_phi(ll x)
{
if(phi[x]) return phi[x];
return phi[x] = euler_phi(x);
} ll qpow(ll a, ll b, ll p)
{
ll ret = ;
while(b)
{
if(b&) ret = Mod(ret * a, p);
a = Mod(a * a ,p);
b >>= ;
}
return ret;
} ll cal(ll l, ll r, ll p) //a^a^a..^a共b次
{
//printf("%lld %lld\n", t, p);
//if(t == 1) return Mod(a, p);
if(l == r) return Mod(a[l], p);
if(p == ) return Mod(a[l], p);
ll phip = get_phi(p);
return qpow(a[l], cal(l+, r, phip), p); //第一类和第三类
} int main()
{
scanf("%I64d%I64d", &n, &p);
for(int i = ;i <= n;i++) scanf("%I64d", &a[i]);
int q;
scanf("%d", &q);
while(q--)
{
ll l, r;
scanf("%I64d%I64d", &l, &r);
printf("%I64d\n", cal(l, r, p) % p); //这个取模不能少
}
return ;
}

参考链接:

1. https://blog.csdn.net/Charlie_jilei/article/details/79252689

2.https://blog.csdn.net/qq_35914587/article/details/79883547

[CodeForces - 906D] Power Tower——扩展欧拉定理的更多相关文章

  1. CodeForces 907F Power Tower(扩展欧拉定理)

    Priests of the Quetzalcoatl cult want to build a tower to represent a power of their god. Tower is u ...

  2. 【CodeForces】906 D. Power Tower 扩展欧拉定理

    [题目]D. Power Tower [题意]给定长度为n的正整数序列和模数m,q次询问区间[l,r]累乘幂%m的答案.n,q<=10^5,m,ai<=10^9. [算法]扩展欧拉定理 [ ...

  3. CodeForces - 906D Power Tower(欧拉降幂定理)

    Power Tower CodeForces - 906D 题目大意:有N个数字,然后给你q个区间,要你求每一个区间中所有的数字从左到右依次垒起来的次方的幂对m取模之后的数字是多少. 用到一个新知识, ...

  4. [Codeforces]906D Power Tower

    虽说是一道裸题,但还是让小C学到了一点姿势的. Description 给定一个长度为n的数组w,模数m和询问次数q,每次询问给定l,r,求: 对m取模的值. Input 第一行两个整数n,m,表示数 ...

  5. Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)

    题目链接  Power Tower 题意  给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$  对m取模的值 根据这个公式 每次 ...

  6. Codeforces Round #454 (Div. 1) CodeForces 906D Power Tower (欧拉降幂)

    题目链接:http://codeforces.com/contest/906/problem/D 题目大意:给定n个整数w[1],w[2],……,w[n],和一个数m,然后有q个询问,每个询问给出一个 ...

  7. Codeforces Round #454 D. Power Tower (广义欧拉降幂)

    D. Power Tower time limit per test 4.5 seconds memory limit per test 256 megabytes input standard in ...

  8. CodeForces 906D (欧拉降幂)

    Power Tower •题意 求$w_{l}^{w_{l+1}^{w_{l+2}^{w_{l+3}^{w_{l+4}^{w_{l+5}^{...^{w_{r}}}}}}}}$ 对m取模的值 •思路 ...

  9. CF906D Power Tower

    扩展欧拉定理 CF906D Power Tower 洛谷交的第二个黑题 题意 给出一个序列\(w-1,w_2,\cdots,w_n\),以及\(q\)个询问 每个询问给出\(l,r\),求: \[w_ ...

随机推荐

  1. 01 Struts2框架学习(了解一下,已过时)

    1.框架介绍 所谓框架,就是把一些繁琐的重复性代码封装起来,使程序员在编码中把更多的精力放到业务需求的分析和理解上面. 特点:封装了很多细节,程序员在使用的时候会非常简单. 早前,有三大框架strut ...

  2. win10 远程连接怎么设置快捷方式

    在桌面空白处右键,选择新建快捷方式,然后输入命令:C:\windows\system32\mstsc.exe,点击下一步,然后输入快捷方式名称:远程连接,点击确定即可.

  3. Python-15-面向对象

    一.什么是面向对象 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强...” 优点:解 ...

  4. day41——数值类型、完整性约束

    day41 数值类型 整数类型 有符号的设置 mysql> create table t1(id tinyint); # 默认有符号,即数字前有正负号 无符号的设置 mysql> crea ...

  5. REST framework之分页组件

    REST framework之分页组件 一 简单分页 查看第n页,每页显示n条 from rest_framework.pagination import PageNumberPagination # ...

  6. 协议——IIC

    I²C即Inter-Integrated Circuit(集成电路总线),它是一种串行通信总线,使用多主从架构,由飞利浦公司在1980年代设计出来的一种简单.双向.二线制总线标准.多用于主机和从机在数 ...

  7. Exception: HTTP 599: SSL certificate problem: unable to get local issuer certificate 解决办法

    使用Pyspider中报此错误. 错误原因: 这个错误会发生在请求 https 开头的网址,SSL 验证错误,证书有误. 解决方法: 使用self.crawl(url, callback=self.i ...

  8. redis HyperLogLog的使用

    一.概念1.redis在2.8.9版本添加了HyperLogLog结构.2.redis HyperLogLog是用来做基数统计的算法,HyperLogLog的优点是:在输入元素的数量或者体积非常非常大 ...

  9. Nginx惊群问题

    Nginx惊群问题 "惊群"概念 所谓惊群,可以用一个简单的比喻来说明: 一群等待食物的鸽子,当饲养员扔下一粒谷物时,所有鸽子都会去争抢,但只有少数的鸽子能够抢到食物, 大部分鸽子 ...

  10. js加减乘除函数

    经常用到算数的时候,可以直接用:// 除法函数function accDiv(arg1, arg2) { var t1 = 0, t2 = 0, r1, r2; try { t1 = arg1.toS ...