分布式系统故障场景梳理方法:

场景梳理逻辑关系:

  • 单点硬件故障→单点进程故障类型→集群影响→集群故障场景

  • 第三方依赖故障→集群依赖关系→集群影响→集群故障场景

  • 业务场景→集群负载/错误影响→集群故障场景

Kafka故障场景

Kafka故障的定义是什么?

故障场景

  • 单点硬件故障→集群故障场景

  • 第三方依赖故障→集群故障场景

  • 业务场景→集群故障场景

Kafka压测

Kafka数据丢失:

Kafka什么情况下一定会丢失数据?

Kafka什么情况的一定不会丢失数据?

Kafka数据写入降低百毫秒级?

Kafka的Topic分片规模的设置与延迟的关系?

80%通用场景 + 20%业务特性 = 相对完善和通用的故障场景
要区分现象和原因,列举的是现象而非原因
chaosmonkey 第一版里面有一些破坏性的shell脚本可以用

节点故障
各个角色单独关闭至少一台机器,直至服务故障(线下)
各个角色同时关闭一台机器
任意一个交换机故障

单机资源:CPU、MEM、NET、DISK、IO、Ulimit
磁盘
磁盘空间写满
磁盘故障(只读)
磁盘IO饱和

节点故障,网络分区,丢包和慢速网络————目的是找出RabbitMQ集群丢失消息的方式和时间

第三方依赖:数据库、缓存、共享存储、上下游、DNS、LB、基础设施等

业务特性
集群Topic leader丢失
集群中的单个Topic分区异常的多
集群中总的分区过多
集群出现大面积的分区迁移

容量
数据写入量——单条record信息过大
消息写入量——批量消息过多

Kafka故障因子来自如下几个方面:

  • 生产者外部—每秒数据写入量(控制参数:record batch-size和throughput,thread_pool)
  • 自身内部—磁盘空间,节点数丢失,业务饱和度(分片数量,IO饱和度,内存不足?)
  • 依赖关系模块—Zookeeper问题

Kafka故障指标:

  • 功能不可用
  • 出现消息丢失——Topic没有leader
  • 消息延迟——大于100ms

以此梳理出Kafka的故障场景:

  1. 数据写入量——单条record信息过大
  2. 消息写入量——批量消息过多
  3. 集群磁盘空间被写满——单机被打满后集群会做什么事情
  4. 集群节点丢失1/5
  5. 集群节点丢失1/3
  6. 集群节点丢失1/2
  7. 集群Topic leader丢失
  8. 集群中的单个Topic分区异常的多
  9. 集群中总的分区过多
  10. 集群出现大面积的分区迁移——磁盘IO饱和
  11. 集群磁盘故障
  12. Zookeeper集群功能不可用

12-1.ZK集群节点丢失1/2

12-2.ZK集群被频繁请求

12-3.ZK集群leader选举

故障场景演练

  1. 数据写入量——单条record信息过大

考虑如下场景的比较,比较消息写入延迟率

(1)topic:test1(6,1),–record-size=838860(0.8M)–throughput 4096

(1)topic:test1(6,1),–record-size=4(KB)–throughput 4096

考虑到集群默认有消息最大请求限制(message.max.bytes=1000000,1MB以内)。

org.apache.kafka.common.errors.NotLeaderForPartitionException: This server is not the leader for that topic-partition.

2.消息写入量——批量消息过多

(1)topic:test1(6,1),–record-size=4(KB),–throughput 1000

(2)topic:test1(6,1),–record-size=4(0.1M),–throughput 100000000

org.apache.kafka.common.errors.NotLeaderForPartitionException: This server is not the leader for that topic-partition.
以及另外一种报错:
org.apache.kafka.common.errors.TimeoutException: Expiring 1 record(s) for test2-0 due to 30001 ms has passed since last append

极端场景为:

topic:test1(6,1),–record-size=838860(0.8M),–throughput 100000000

3.

Broker 数据盘没有空间导致kafka自动关闭

[2018-10-29 16:50:16,939] FATAL [Replica Manager on Broker 0]: Halting due to unrecoverable I/O error while handling produce request: (kafka.server.ReplicaManager) kafka.common.KafkaStorageException: I/O exception in append to log 'test2-0' at kafka.log.Log.append(Log.scala:349) at kafka.cluster.Partition$$anonfun$10.apply(Partition.scala:443) at kafka.cluster.Partition$$anonfun$10.apply(Partition.scala:429) at kafka.utils.CoreUtils$.inLock(CoreUtils.scala:234) at kafka.utils.CoreUtils$.inReadLock(CoreUtils.scala:240) at kafka.cluster.Partition.appendMessagesToLeader(Partition.scala:429) at kafka.server.ReplicaManager$$anonfun$appendToLocalLog$2.apply(ReplicaManager.scala:407) at kafka.server.ReplicaManager$$anonfun$appendToLocalLog$2.apply(ReplicaManager.scala:393) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:99) at scala.collection.mutable.HashMap$$anonfun$foreach$1.apply(HashMap.scala:99) at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230) at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40) at scala.collection.mutable.HashMap.foreach(HashMap.scala:99) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.AbstractTraversable.map(Traversable.scala:104) at kafka.server.ReplicaManager.appendToLocalLog(ReplicaManager.scala:393) at kafka.server.ReplicaManager.appendMessages(ReplicaManager.scala:330) at kafka.server.KafkaApis.handleProducerRequest(KafkaApis.scala:436) at kafka.server.KafkaApis.handle(KafkaApis.scala:78) at kafka.server.KafkaRequestHandler.run(KafkaRequestHandler.scala:60) at java.lang.Thread.run(Thread.java:745) Caused by: java.io.IOException: No space left on device at sun.nio.ch.FileDispatcherImpl.write0(Native Method) at sun.nio.ch.FileDispatcherImpl.write(FileDispatcherImpl.java:60) at sun.nio.ch.IOUtil.writeFromNativeBuffer(IOUtil.java:93) at sun.nio.ch.IOUtil.write(IOUtil.java:65) at sun.nio.ch.FileChannelImpl.write(FileChannelImpl.java:211) at kafka.message.ByteBufferMessageSet.writeFullyTo(ByteBufferMessageSet.scala:304) at kafka.log.FileMessageSet.append(FileMessageSet.scala:354) at kafka.log.LogSegment.append(LogSegment.scala:97) at kafka.log.Log.append(Log.scala:409) ... 22 more

8.集群中的单个Topic分区异常的多

考虑如下场景的比较,比较消息写入延迟率

(1-1)topic:test1(6000,1),–record-size=838860(0.8M)–throughput 100000000

org.apache.kafka.common.errors.NotLeaderForPartitionException: This server is not the leader for that topic-partition.

(1-2)topic:test1(6000,1),–record-size=838860(0.8M)–throughput 1000000

(1-3)topic:test1(6000,1),–record-size=4(KB)–throughput 100000000

(1-4)topic:test1(6000,1),–record-size=4(KB)–throughput 100000000

10.集群出现大面积的分区迁移——磁盘IO饱和

11.Zookeeper集群功能不可用

Kafka压测— 搞垮kafka的方法(转)的更多相关文章

  1. kafka压测

    原文并未提及kafka的版本 并且测试的消息大小都偏小  测试数据供参考 原文还测试了broker等    原文请移步文章末尾 4.1 producer测试 4.1.1 batch-size 测试结果 ...

  2. kafka基本版与kafka acl版性能对比(单机版)

    一.场景 线上已经有kafka集群,服务运行稳定.但是因为产品升级,需要对kakfa做安全测试,也就是权限验证. 但是增加权限验证,会不会对性能有影响呢?影响大吗?不知道呀! 因此,本文就此来做一下对 ...

  3. 日新进用户200W+,解密《龙之谷》手游背后的压测故事

    2017年3月,腾讯正式于全平台上线了<龙之谷>手游,次日冲到了App Store畅销排行第二的位置,并维持到了现在.上线当日百度指数超过40万,微信游戏平台数据显示预约数780多万,而据 ...

  4. jmeter命令行压测

    简介:使用非GUI模式,即命令行模式运行jmeter测试脚本能够大大缩减系统资源 1.配置jdk及添加环境变量 变量名:JAVA_HOME 变量值: C:\Program Files\Java\jdk ...

  5. (八)使用 jmh 压测 Dubbo

    1.JMH简介 JMH即Java Microbenchmark Harness,是Java用来做基准测试的一个工具,该工具由OpenJDK提供并维护,测试结果可信度高. 相对于 Jmeter.ab , ...

  6. kafka分布式虚拟机群部署配置方法

    1 配置jdk8 假设安装(解压)路径:jdk1.8.0 修改/etc/profile,增加以下设置并保存 Export JAVA_HOME=jdk1.8.0 Export PATH=$JAVA_HO ...

  7. JMeter压测“java.net.SocketException: Socket closed”解决方法

    报错详情: java.net.SocketException: Socket closed at java.net.SocketInputStream.socketRead0(Native Metho ...

  8. JMeter压测“java.net.SocketException: Socket closed”解决方法 - Andrea-Pirlo

    报错详情: 引起 java.net.SocketException: Socket closed 错误的原因通常是 未设置连接的超时时间. 解决方法: 该问题可以尝试通过以下方法解决. 如果在 HTT ...

  9. Kafka性能调优 - Kafka优化的方法

    今天,我们将讨论Kafka Performance Tuning.在本文“Kafka性能调优”中,我们将描述在设置集群配置时需要注意的配置.此外,我们将讨论Tuning Kafka Producers ...

随机推荐

  1. hdu6172&&hdu6185&&P5487——BM算法

    hdu6172 模板的简单应用 先根据题中的表达式求出前几项,再上BM,注意一下n的大小关系. #include <bits/stdc++.h> using namespace std; ...

  2. ES6函数的个人总结

    默认参数: 1. 在 ES5 语法中,为函数形参指定默认值的写法: 写法一: function foo (bar) { bar = bar || 'abc'; console.log(bar) } f ...

  3. 让一个项目同时提交到码云和GitHub两个仓库

    在项目目录里找到.git文件夹然后找到config文件. 打开这个文件后找到下面的代码 [remote "origin"] url = git提交地址 fetch = +refs/ ...

  4. Tips on Blind Source Separation

    盲源分离是指在不知道源信号和信道传输参数的情况下,根据输入信号的统计特性,仅由观测信号恢复出源信号各个独立成分的过程.盲源分离研究的信号模型主要有三种:线性混合模型.卷积混合模型和非线性混合模型. 1 ...

  5. 2019-2020-1 20199302《Linux内核原理与分析》第七周作业

    第六章 进程的描述和进程的创建 (一)进程的描述 1.OS的三大管理功能:(1)进程管理(进程)(2)内存管理(虚拟内存)(3)文件系统(文件) 2.进程的描述:进程控制块PCB 3.在Linux内核 ...

  6. MySQL 开启远程链接(localhost 以外的主机)

    1.在连接服务器后,操作mysql系统数据库 命令为:  mysql -u root -p use mysql: 查询用户表命令:select  User,authentication_string, ...

  7. 利用Xilinx ROM仿真时注意包括.mif文件

    利用Xilinx ROM仿真时,注意包括.mif文件.一般是将.v文件和.mif文件放在同一个目录下,以便.v文件读取.mif数据.如不注意,就不会读出有效数据.

  8. 小数据池/is和==/再谈编码作业

    # 1,老男孩好声选秀大赛评委在打分的时候呢, 可以输入分数. 假设, 老男孩有10个评委. 让10个评委进行打分, 要求, 分数必须高于5分, 低于10分.将每个评委的打分情况保存在列表中. pin ...

  9. 银联高校极客挑战赛第一场 A.码队女朋友的王者之路[水题]

    目录 题目地址 题干 代码和解释 题目地址 计蒜客回顾比赛 码队女朋友的王者之路 题干 代码和解释 本题难度不大,但是一开始没有读懂题,以为净胜场次是确定的,没有"最高净胜场次"的 ...

  10. MacBook Air装Windows7双系统后的一些(未尝试)想法

    转载请标注原地址:https://www.cnblogs.com/lixiaojing/p/11458477.html 运行环境: macOS在Mojave下的Boot Camp Assistant只 ...