pytorch 计算图像数据集的均值和标准差
在使用 torchvision.transforms进行数据处理时我们经常进行的操作是:
transforms.Normalize((0.485,0.456,0.406), (0.229,0.224,0.225))
前面的(0.485,0.456,0.406)表示均值,分别对应的是RGB三个通道;后面的(0.229,0.224,0.225)则表示的是标准差
这上面的均值和标准差的值是ImageNet数据集计算出来的,所以很多人都使用它们
但是如果你想要计算自己的数据集的均值和标准差,让其作为你的transforms.Normalize函数的参数的话可以进行下面的操作
代码get_mean_std.py:
# coding:utf-
import os
import numpy as np
from torchvision.datasets import ImageFolder
import torchvision.transforms as transforms
from dataloader import Dataloader
from options import options
import pickle
"""
在训练前先运行该函数获得数据的均值和标准差
""" class Dataloader():
def __init__(self, opt):
# 训练,验证,测试数据集文件夹名
self.opt = opt
self.dirs = ['train', 'test', 'testing'] self.means = [, , ]
self.stdevs = [, , ] self.transform = transforms.Compose([transforms.Resize(opt.isize),
transforms.CenterCrop(opt.isize),
transforms.ToTensor(),#数据值从[0,255]范围转为[0,1],相当于除以255操作
# transforms.Normalize((0.485,0.456,0.406), (0.229,0.224,0.225))
]) # 因为这里使用的是ImageFolder,按文件夹给数据分类,一个文件夹为一类,label会自动标注好
self.dataset = {x: ImageFolder(os.path.join(opt.dataroot, x), self.transform) for x in self.dirs} def get_mean_std(self, type, mean_std_path):
"""
计算数据集的均值和标准差
:param type: 使用的是那个数据集的数据,有'train', 'test', 'testing'
:param mean_std_path: 计算出来的均值和标准差存储的文件
:return:
"""
num_imgs = len(self.dataset[type])
for data in self.dataset[type]:
img = data[]
for i in range():
# 一个通道的均值和标准差
self.means[i] += img[i, :, :].mean()
self.stdevs[i] += img[i, :, :].std() self.means = np.asarray(self.means) / num_imgs
self.stdevs = np.asarray(self.stdevs) / num_imgs print("{} : normMean = {}".format(type, self.means))
print("{} : normstdevs = {}".format(type, self.stdevs)) # 将得到的均值和标准差写到文件中,之后就能够从中读取
with open(mean_std_path, 'wb') as f:
pickle.dump(self.means, f)
pickle.dump(self.stdevs, f)
print('pickle done') if __name__ == '__main__':
opt = options().parse()
dataloader = Dataloader(opt)
for x in dataloader.dirs:
mean_std_path = 'mean_std_value_' + x + '.pkl'
dataloader.get_mean_std(x, mean_std_path)
然后再从相应的文件读取均值和标准差放到dataloader.py的transforms.Normalize函数中即可:
# coding:utf-
import os
import torch
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
import numpy as np
import pickle """
用于加载训练train、验证test和测试数据testing
""" class Dataloader():
def __init__(self, opt):
# 训练,验证,测试数据集文件夹名
self.opt = opt
self.dirs = ['train', 'test', 'testing']
# 均值和标准差存储的文件路径
self.mean_std_path = {x: 'mean_std_value_' + x + '.pkl' for x in self.dirs} # 初始化为0
self.means = {x: [, , ] for x in self.dirs}
self.stdevs = {x: [, , ] for x in self.dirs}
print(type(self.means['train']))
print(self.means)
print(self.stdevs) for x in self.dirs:
#如果存在则说明之前有获取过均值和标准差
if os.path.exists(self.mean_std_path[x]):
with open(self.mean_std_path[x], 'rb') as f:
self.means[x] = pickle.load(f)
self.stdevs[x] = pickle.load(f)
print('pickle load done') print(self.means)
print(self.stdevs)
# 将相应的均值和标准差设置到transforms.Normalize函数中
self.transform = {x: transforms.Compose([transforms.Resize(opt.isize),
transforms.CenterCrop(opt.isize),
transforms.ToTensor(),
transforms.Normalize(self.means[x], self.stdevs[x]),
]) for x in self.dirs}
...
pytorch 计算图像数据集的均值和标准差的更多相关文章
- 计算图像数据集的RGB均值
最近在跑代码的时候,需要用到RGB三个通道上的均值,如下图所示: 写了一个程序,如下: import os import cv2 import random import numpy as np #数 ...
- opencv学习之路(38)、Mat像素统计基础——均值,标准差,协方差;特征值,特征向量
本文部分内容转自 https://www.cnblogs.com/chaosimple/p/3182157.html 一.统计学概念 二.为什么需要协方差 三.协方差矩阵 注:上述协方差矩阵还需要除以 ...
- OpenCV2+入门系列(四):计算图像的直方图,平均灰度,灰度方差
本篇懒得排版,直接在网页html编辑器编辑 在图像处理时,我们常常需要求出图像的直方图.灰度平均值.灰度的方差,这里给出一个opencv2+自带程序,实现这些功能. 直方图 对于直方图,使用cv::c ...
- Caffe学习系列(15):计算图片数据的均值
图片减去均值后,再进行训练和测试,会提高速度和精度.因此,一般在各种模型中都会有这个操作. 那么这个均值怎么来的呢,实际上就是计算所有训练样本的平均值,计算出来后,保存为一个均值文件,在以后的测试中, ...
- 计算图像相似度——《Python也可以》之一
声明:本文最初发表于赖勇浩(恋花蝶)的博客http://blog.csdn.net/lanphaday 先将两张图片转化为直方图,图像的相似度计算就转化为直方图的距离计算了,本文依照如下公式进行直方图 ...
- OpenCV 学习(计算图像的直方图)
OpenCV 计算图像的直方图 计算图像的直方图是图像处理领域一个非经常见的基本操作. OpenCV 中提供了 calcHist 函数来计算图像直方图.只是这个函数说实话挺难用的,研究了好久才掌握了些 ...
- C语言之文件操作07——读取文件数据并计算均值方差标准差
//文件 /* =============================================================== 题目:从文本文件"high.txt" ...
- 动手学深度学习6-认识Fashion_MNIST图像数据集
获取数据集 读取小批量样本 小结 本节将使用torchvision包,它是服务于pytorch深度学习框架的,主要用来构建计算机视觉模型. torchvision主要由以下几个部分构成: torchv ...
- 什么是pytorch(4.数据集加载和处理)(翻译)
数据集加载和处理 这里主要涉及两个包:torchvision.datasets 和torch.utils.data.Dataset 和DataLoader torchvision.datasets是一 ...
随机推荐
- JQuery的入门(二)
Jquery的遍历 jQuery对象本身就是数组对象,通过jquery选择器获得的都是满足该选择器条件的元素对象的集合体,因此在常常需要对jquery对象进行遍历.这里有三种遍历Jquery的方法. ...
- test20190827 NOIP2019 模拟赛
100+100+50=250.最后那道期望题需要用另外的方式统计. 精灵加护 ljss 被 M 个敌人打倒在地上啦!每个敌人有一个威力值 bi.但是他手中还拥有 N 把武器!每把武器有一个威力值 ai ...
- 关于jquery的事件委托-bind,live,delegate,on的区别发展
1.bind()方法 (只能给已经存在的元素上绑定事件) 只能给调用它的时候已经存在的元素绑定事件,不能给未来新增的元素绑定事件. $('ul li').bind('click', function( ...
- 使用Redis分布式锁处理并发,解决超卖问题
一.使用Apache ab模拟并发压测 1.压测工具介绍 $ ab -n 100 -c 100 http://www.baidu.com/ -n表示发出100个请求,-c模拟100个并发,相当是100 ...
- BAT文件的调用
分成2个步骤,首先生成一个bat文件,然后调用批处理文件 1.生成.bat文件 入参为文件的内容,filePath为绝对路径,且需要扩展名(这个方法不局限于生成.bat文件,也可以生成其他扩展名文件) ...
- Python中pass、continue、break、exit()的区别
pass :不做任何事情,只起到占位的作用 continue: 跳出本次循环 break:结束循环 exit():结束整个程序 由于continue和break较简单,这里就不给出代码
- 016_Python3 函数
函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段. 函数能提高应用的模块性,和代码的重复利用率.你已经知道Python提供了许多内建函数,比如print().但你也可以自己创建函数,这 ...
- Nginx和php-fpm的启用和停用脚本
#!/bin/bash #停止php-fpm sudo php -v ps -ef | grep php-fpm | sed '$d' echo "..................... ...
- C++中unique函数的用法总结
个人感觉,unique是STL中很实用的函数之一,需要#include,下面来简单介绍一下它的作用. unique的作用是"去掉"容器中相邻元素的重复元素,这里去掉要加一个引号,为 ...
- BAT 定时将多个本地文件同步到共享目录
copy.bat 具体执行脚本,需要修改共享目录访问用户名,密码,同步的文件类型 list.txt 前面为本地文件夹,后面为共享目录,中间以”,”进行分割 附件地址: https://files. ...