期望最大化算法EM。

简介

EM算法即期望最大化算法,由Dempster等人在1976年提出[1]。这是一种迭代法,用于求解含有隐变量的最大似然估计、最大后验概率估计问题。至于什么是隐变量,在后面会详细解释。EM算法在机器学习中有大量成功的应用,典型是求解高斯混合模型,隐马尔可夫模型。如果你要求解的机器学习模型中有隐变量存在,并且要估计模型的参数,EM算法很多时候是首选算法。

EM算法的推导、收敛性证明依赖于Jensen不等式,我们先对它做一简单介绍。Jensen不等式的表述是,如果f(x)是凸函数,x是随机变量,则下面不等式成立

在这里E是数学期望,对于离散型随机变量,数学期望是求和,对连续型随机变量则为求定积分。如果f(x)是一个严格凸函数,当且仅当x是常数时不等式取等号:

EM算法的目标是求解似然函数或后验概率的极值,而样本中具有无法观测的隐含变量。

应用原理

有人称之为上帝算法,只要有一些训练数据,再定义一个最大化函数,采用EM算法,利用计算机经过若干次迭代,就可以得到所需的模型。EM算法是自收敛的分类算法,既不需要事先设定类别也不需要数据见的两两比较合并等操作。缺点是当所要优化的函数不是凸函数时,EM算法容易给出局部最佳解,而不是最优解。

在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。

EM经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。

EM算法用于寻找隐藏参数的最大似然估计。该算法首先在E step中计算隐藏参数的似然估计,然后再M step中进行最大化,然后进行EM step的迭代直至收敛。应用场景之一是聚类问题,但EM算法本身并不是一个聚类算法。举个例子,GMM(高斯混合模型)和Kmeans在聚类时都使用了EM算法。

EM 算法还是许多非监督聚类算法的基础(如 Cheeseman et al. 1988 ),而且它是用于学习部分可观察马尔可夫模型( Partially Observable Markov Model )的广泛使用的 Baum-Welch 前向后向算法的基础。

总结来说,EM算法就是通过迭代,最大化完整数据的对数似然函数的期望,来最大化不完整数据的对数似然函数。

参考文献

[1] Arthur P Dempster, Nan M Laird, Donald B Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the royal statistical society series b-methodological, 1976.

Expectation Maximization Algorithm的更多相关文章

  1. EM算法(Expectation Maximization Algorithm)初探

    1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b: ...

  2. [转]EM算法(Expectation Maximization Algorithm)详解

    https://blog.csdn.net/zhihua_oba/article/details/73776553 EM算法(Expectation Maximization Algorithm)详解 ...

  3. EM算法(Expectation Maximization Algorithm)

    EM算法(Expectation Maximization Algorithm) 1. 前言   这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的< ...

  4. EM算法(Expectation Maximization)

    1 极大似然估计     假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成绩的分 ...

  5. 简单理解EM算法Expectation Maximization

    1.EM算法概念 EM 算法,全称 Expectation Maximization Algorithm.期望最大算法是一种迭代算法,用于含有隐变量(Hidden Variable)的概率参数模型的最 ...

  6. EM(Expectation Maximization)算法

    EM(Expectation Maximization)算法  参考资料: [1]. 从最大似然到EM算法浅解 [2]. 简单的EM算法例子 [3]. EM算法)The EM Algorithm(详尽 ...

  7. 最大期望算法 Expectation Maximization概念

    在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Lat ...

  8. Expectation Maximization and GMM

    Jensen不等式 Jensen不等式给出了积分的凸函数值必定大于凸函数(convex)的积分值的定理.在凸函数曲线上的任意两点间连接一条线段,那么线段会位于曲线之上,这就是将Jensen不等式应用到 ...

  9. 漫谈 Clustering (番外篇): Expectation Maximization

    Expectation Maximization (EM) 是一种以迭代的方式来解决一类特殊最大似然 (Maximum Likelihood) 问题的方法,这类问题通常是无法直接求得最优解,但是如果引 ...

随机推荐

  1. Delphi RSA加解密【 (RSA公钥加密,私钥解密)、(RSA私钥加密,公钥解密)、MD5加密、SHA加密】

    作者QQ:(648437169) 点击下载➨delphi RSA加解密 [Delphi RSA加解密]支持 (RSA公钥加密,私钥解密).(RSA私钥加密,公钥解密).MD5加密.SHA1加密.SHA ...

  2. setPos 详解

    etWindowPos 详解   函数名: SetWindowPos 头文件: winuser.h 函数原型: BOOL SetWindowPos ( HWND hWnd, //窗口句柄 HWND h ...

  3. js 数组传统方法

    js 数组传统方法 push() 功能:向数组的末尾添加一个或多个元素 var arr = [4]; arr.push(1,2,3); // [4,1,2,3] 返回: 会返回新数组的长度length ...

  4. CentOS7安装Grafana(Yum)

    一.概述 Grafana是一个跨平台的开源的分析和可视化工具,可以通过将采集的数据查询然后可视化的展示,并及时通知. 其特点: 丰富的可视化显示插件,包括热图.折线图.饼图,表格等等. 多数据源,支持 ...

  5. AGC037

    Contest page A Tag:贪心 猜想段的长度只会有$1$和$2$(感性理解,应该可以反证--),然后就可以DP/贪心了 B Tag:贪心.组合 考虑如何构造合法方案.从右往左考虑球,因为当 ...

  6. navicat连接mysql出现2059

    1.找到mysql的目录:C:\Program Files\MySQL\MySQL Server 8.0\bin 2.清空此目录,输入cmd,回车 3.在控制台输入:mysql -u root -p ...

  7. C#类型成员:构造函数

    一.构造函数 构造函数是类的特殊方法,它永远不会返回值(即使是void),并且方法名和类名相同,同样支持重载.在使用new关键字创建对象时构造函数被间接调用,为对象初始化字段和属性的值. 无参构造函数 ...

  8. Ole操作帮助类

    /// <summary> /// Ole操作类 /// </summary> public class OleDataBaseHandle { private static ...

  9. Ubuntu中安装(升级)GraphicsMagick

    1 前言 采用官方下载安装包然后强制安装升级Ubuntu中有的老版本gmagick-1.3.28,升级到gmagick-1.3.31 仅用来记录使用. 2.准备工作 1.下载安装包 https://s ...

  10. iOS之集成GoogleMap定位、搜索注意事项

    简介: 最近花了些时间看了GoogleMap官方文件并集成到国际版app中,网上关于GoogleMap for iOS的讲解相对Android来说少一点,比较有帮助的几乎全是英文文档.下面是我开发过程 ...