问题描述

BZOJ1001

LG4001


题解

平面图最小割=对偶图最短路

假设起点和终点间有和其他边都不相交的一条虚边。

如图,平面图的若干条边将一个平面划分为若干个图形,每个图形就是对偶图中的一个点。

对偶图中的每一个点,和它在平面图中每一个相邻的图形间有边,边权为原来分开它们的边的边权。

于是平面图最小割就是对偶图最短路。


\(\mathrm{Code}\)

#include<bits/stdc++.h>
using namespace std; const int maxn=2*1000*1000+7;
int n,m,S,T;
int Head[maxn],to[maxn*3],Next[maxn*3],tot=1,w[maxn*3]; void addedge(int x,int y,int z){
to[++tot]=y,Next[tot]=Head[x],Head[x]=tot,w[tot]=z;
} void add(int x,int y,int z){
addedge(x,y,z);addedge(y,x,z);
} void Init(void){
scanf("%d%d",&n,&m);
} int id(int x,int y,int type){
return (x-1)*(m-1)+y+(type-1)*(n-1)*(m-1);
} void Hori(void){
for(int i=1,x;i<m;i++){
scanf("%d",&x);
add(S,id(1,i,1),x);
}
for(int i=2,x;i<n;i++){
for(int j=1;j<m;j++){
scanf("%d",&x);
add(id(i-1,j,2),id(i,j,1),x);
}
}
for(int i=1,x;i<m;i++){
scanf("%d",&x);
add(id(n-1,i,2),T,x);
}
} void Longi(void){
for(int i=1,x;i<n;i++){
scanf("%d",&x);add(T,id(i,1,2),x);
for(int j=2;j<m;j++){
scanf("%d",&x);
add(id(i,j-1,1),id(i,j,2),x);
}
scanf("%d",&x);add(id(i,m-1,1),S,x);
}
} void Obli(void){
for(int i=1;i<n;i++){
for(int j=1,x;j<m;j++){
scanf("%d",&x);
add(id(i,j,1),id(i,j,2),x);
}
}
} void Graph_build(void){
S=(n-1)*(m-1)*2+1,T=S+1;
Hori();
Longi();
Obli();
} int dis[maxn];
bool vis[maxn];
#define pii(x,y) make_pair(x,y) void dijkstra(void){
memset(dis,0x3f,sizeof(dis));
priority_queue<pair<int,int> >q;
q.push(pii(0,S));dis[S]=0;
while(!q.empty()){
int x=(q.top()).second;q.pop();
if(vis[x]) continue;vis[x]=1;
if(x==T) return;
for(int i=Head[x];i;i=Next[i]){
int y=to[i];
if(dis[y]>dis[x]+w[i]){
dis[y]=dis[x]+w[i];
q.push(pii(-dis[y],y));
}
//if(y==T) return;
}
}
} void One(void){
int ans=0x3f3f3f3f,x;
for(int i=1;i<=n;i++) for(int j=1;j<m;j++){
scanf("%d",&x);ans=min(ans,x);
}
for(int i=1;i<n;i++) for(int j=1;j<=m;j++){
scanf("%d",&x);ans=min(ans,x);
}
printf("%d\n",ans);
} void Work(void){
if(n==1||m==1){
One();return;
}
Graph_build();
dijkstra();
printf("%d\n",dis[T]);
} int main(){
Init();
Work();
return 0;
}

BZOJ1001/LG4001 「ICPC Beijing2006」狼抓兔子 平面图最小割转对偶图最短路的更多相关文章

  1. BZOJ_2001_[BeiJing2006]狼抓兔子_最小割转对偶图

    BZOJ_2001_[BeiJing2006]狼抓兔子 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 分析:思路同NOI2010海拔. ...

  2. bzoj 1001: [BeiJing2006]狼抓兔子 平面图最小割

    平面图跑最大流 可以转换为其对偶图跑最短路 一个环对应一个割  找到最小环(即最短路)极为所求,注意辅助边的建立 加入读入优化  不过时间还是一般  估计是dij写的不好   大神勿喷~~~ /*** ...

  3. bzoj 1001 狼抓兔子 —— 平面图最小割(最短路)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1001 平面图最小割可以转化成最短路问题: 建图时看清楚题目的 input ... 代码如下: ...

  4. 2021.12.02 P4001 [ICPC-Beijing 2006]狼抓兔子(最小割)

    2021.12.02 P4001 [ICPC-Beijing 2006]狼抓兔子(最小割) https://www.luogu.com.cn/problem/P4001 题意: 把图分成两部分需要的最 ...

  5. [BZOJ1001][BeiJing2006]狼抓兔子(最小割转最短路|平面图转对偶图)

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 31805  Solved: 8494[Submit][ ...

  6. BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...

  7. BZOJ1001:狼抓兔子(最小割最大流+vector模板)

    1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...

  8. BZOJ1001 BJOI2006狼抓兔子(最小割+最短路)

    显然答案就是最小割.直接跑dinic也能过,不过显得不太靠谱. 考虑更正确的做法.作为一个平面图,如果要把他割成两半,那么显然可以用一条曲线覆盖且仅覆盖所有割边.于是我们把空白区域看成点,隔开他们的边 ...

  9. 【Bzoj】1001狼抓兔子(平面图最小割转对偶图最短路)

    YEAH 题目链接 终于做对这道题啦    建图的艰辛难以言表- - 顺便说一句我队列转STL啦 狼抓兔子的地图符合平面图定义,于是将该图转成对偶图并求出对偶图的最短路即可. 这篇博客给了我极大的帮助 ...

随机推荐

  1. How to: Initialize Business Objects with Default Property Values in Entity Framework 如何:在EF中用默认属性值初始化业务对象

    When designing business classes, a common task is to ensure that a newly created business object is ...

  2. vue常见问题处理 -- 页面刷新时,如何保持原有vuex中的state信息

    一.页面刷新时,如何保持原有vuex中的state信息 页面刷新后,原有的 vuex 中的 state 会发生改变,如果在页面刷新之前,可以将 state 信息保存,页面重新加载时,再将该值赋给 st ...

  3. 下拉框移动 jquery

    <%@ page contentType="text/html;charset=UTF-8" language="java" %><html& ...

  4. Ted:1 Vulnhub Walkthrough

    主机层面端口扫描: ╰─ nmap -p1-65535 -sV -A 10.10.202.134 Starting Nmap 7.70 ( https://nmap.org ) at 2019-08- ...

  5. VS2017无法打开Razor视图文件提示:引发类型"System.Exception"异常

    背景介绍 由于电脑装了R#(吃内存大户),导致VS2017打开项目慢以及卡顿,因此在扩展和更新这个功能里面将没用的插件关闭了,导致.NET CORE的Razor视图文件打不开(真心是一脸懵逼,关个插件 ...

  6. oracle 11gR2 RAC 停库和启库

    grid设置环境变量后可以在任意目录下执行,如root没设置的话需要带绝对路径export ORACLE_HOME=/u01/app/11.2.0/gridexport PATH=$ORACLE_HO ...

  7. js全局属性/函数

    全局函数 eval () isFinite ()             检查某个值是否为有穷大的数 isNaN () 检查某个值是否是数字                     返回true或fa ...

  8. 《推送开发全面盘点当前Android后台保活方案的真实运行效果》

        登录 立即注册 TCP/IP详解 资讯 动态 社区 技术精选 首页   即时通讯网›专项技术区›推送开发全面盘点当前Android后台保活方案的真实运行效果(截止2 ...   帖子 打赏 分 ...

  9. input函数的运用和注意 小知识点

    首先先写出代码来 Name=input('请输入你的名字:') print(Name) 终端的显示如下: 请输入你的名字: 与之前的所有的函数有一个巨大的不同点,就是在终端处,我们可以输入任意的内容. ...

  10. Linux下shell脚本实现mongodb定时自动备份

    MongoDB是一个基于分布式文件存储的数据库.由C++语言编写.旨在为WEB应用提供可扩展的高性能数据存储解决方案. MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功 ...